
Appendix

A1 Probability Theory

The modern formulation of probability theory is due to Kolmogorov [1933]. In that 60-page mono-

graph, Kolmogorov introduced the notion of probability spaces, the axiomatic definition of probabil-

ity, the modern definition of random variables, and more. For an excellent review of Kolmogorov’s

fundamental contribution, see Nualart [2004]. In this Appendix, we review concepts of probability

theory at the graduate level, including many concepts that are needed in the book. The language

of measure theory is used, although measure-theoretical concepts are only needed in the book in

the starred additional topics sections. For excellent book-length treatments of probability theory,

the reader is referred to Billingsley [1995], Chung [1974], Loève [1977], Cramér [1999], and Rosen-

thal [2006], while a thorough elementary non-measure-theoretical introduction is provided by Ross

[1994].

A1.1 Sample Space and Events

A sample space S is the set of all outcomes of an experiment. A �-algebra is a collection F of subsets

of S that is closed under complementation, (countable) intersection, and (countable) union. Each

set E in F is called an event. Hence, complementation of events are events, and (countable) unions

and intersections of events are events.

Event E is said to occur if it contains the outcome of the experiment. Whenever E ✓ F for two

events E and F , the occurrence of E implies the occurrence of F . The complement event Ec is an

event, which occurs i↵(if and only if) E does not occur. The union E [F is an event, which occurs

i↵ E, F , or both E and F occur. On the other hand, the intersection E \ F is also an event, which

occurs i↵both E and F occur. Finally, if E \F = ; (the latter is called the impossible event), then

E or F may occur but not both.

© Springer Nature Switzerland AG 2020 

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning, 

https://doi.org/10.1007/978-3-030-27656-0

287

https://doi.org/10.1007/978-3-030-27656-0


288 APPENDIX A. APPENDIX

For example, if the experiment consists of flipping two coins, then

S = {(H,H), (H,T ), (T,H), (T, T )} . (A.1)

In this case, the �-algebra contains all subsets of S (any subset of S is an event); e.g., event E that

the first coin lands tails is: E = {(T,H), (T, T )}. Its complement Ec is the event that the first coin

lands heads: Ec = {(H,H), (H,T )}. The union of these two events is the entire sample space S:

one or the other must occur. The intersection is the impossible event: the coin cannot land both

heads and tails on the first flip.

If on the other hand, the experiment consists in measuring the lifetime of a lightbulb, then

S = {t 2 R | t � 0} . (A.2)

Here, for reasons that will be described later, it is not desirable to consider all possible subsets in S

as events. Instead, we consider the smallest �-algebra that contains all intervals in S; this is called

the Borel �-algebra in S, and the events in it are called Borel sets; e.g., the event that the lightbulb

will fail at or earlier than t time units is the Borel set E = [0, t]. The entire sample space is the

countable union
S1

t=1
Et, where {Et; t = 1, 2, . . .} is called an increasing sequence of events. Borel

sets can be quite complicated (e.g., the famous Cantor set is a Borel set). There are sets of real

numbers that are not Borel sets, but these are quite exotic and of no real interest. Generalizing,

the Borel �-algebra B
d of Rd is the smallest �-algebra of subsets of Rd that contains all rectangular

volumes in Rd. If d = 1, we write B
1 = B.

Limiting events are defined as follows. Given any sequence {En;n = 1, 2, . . .} of events, the lim sup

is defined as:

lim sup
n!1

En =
1\

n=1

1[

i=n

Ei . (A.3)

We can see that lim supn!1En occurs i↵ En occurs for an infinite number of n, that is, En occurs

infinitely often. This event is also denoted by [En i.o.]. On the other hand, the lim inf is defined as:

lim inf
n!1

En =
1[

n=1

1\

i=n

Ei . (A.4)

We can see that lim infn!1En occurs i↵ En occurs for all but a finite number of n, that is, En

eventually occurs for all n. Clearly, lim infn!1En ✓ lim supn!1En. If the two limiting events

coincide, then we define

lim
n!1

En = lim inf
n!1

En = lim sup
n!1

En . (A.5)

Notice that, if E1 ✓ E2 ✓ . . . (an increasing sequence), then

lim
n!1

En =
1[

n=1

En , (A.6)
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whereas, if E1 ◆ E2 ◆ . . . (a decreasing sequence), then

lim
n!1

En =
1\

n=1

En . (A.7)

A measurable space (S,F) is a pair consisting of a set S and a �-algebra defined on it. For example,

(Rd,Bd) is the standard Borel-measurable space. A measurable function between two measurable

spaces (S,F) and (T,G) is defined to be a mapping f : S ! T such that for every E 2 G, the

pre-image

f�1(E) = {x 2 S | f(x) 2 E} (A.8)

belongs to F . A function f : Rd
! Rk is said to be Borel-measurable if it is a measurable function

between (Rd,Bd) and (Rk,Bk). A Borel-measurable function is a very general function. For our

purposes, it can be considered to be an arbitrary function. In this book, all functions (including

classifiers and regressions) are assumed to be Borel-measurable.

A1.2 Probability Measure

A measure on (S,F) is a real-valued function µ defined on each E 2 F such that

A1. 0  µ(E)  1 ,

A2. µ(;) = 0 ,

A3. Given any sequence {En;n = 1, 2, . . .} in F such that Ei \ Ej = ; for all i 6= j,

µ

 1[

i=1

Ei

!
=

1X

i=1

µ(Ei) (�-additivity) . (A.9)

The triple (S,F , µ) is called a measure space. A probability measure P is a measure such that

P (S) = 1. A probability space is a triple (S,F , P ), consisting of a sample space S, a �-algebra F

containing all the events of interest, and a probability measure P . A probability space is a model for

a stochastic experiment; the properties of the latter are completely determined once a probability

space is specified.

Lebesgue measure on (Rd,Bd) is a measure � that agrees with the usual definition of length of

intervals in R, �([a, b]) = b � a, area of rectangles in R2, �([a, b] ⇥ [c, d]) = (b � a)(d � c), and

so on for higher-dimensional spaces, and uniquely extends it to complicated (Borel) sets. Notice

that �({x}) = 0, for all x 2 Rd, since a point has no spatial extension (it follows that it makes

no di↵erence whether intervals and rectangles are open, closed, or half-open). By �-additivity,
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any countable subset of Rd has Lebesgue measure zero, and there are uncountable sets that have

Lebesgue measure zero as well (e.g., the Cantor set in R). Sets of Lebesgue measure zero are very

sparse; any property that holds in Rd outside of such a set is said to hold almost everywhere (a.e.).

The measure space (Rd,Bd,�) provides the standard setting for mathematical analysis.

Lebesgue measure restricted to ([0, 1],B0), where B0 is the �-algebra containing all Borel subsets

of [0, 1], is a probability measure, since �([0, 1]) = 1. The probability space ([0, 1],B0.�) provides

a model for the familiar uniform distribution on [0, 1]. A famous impossibility theorem states that

there does not exist a probability measure defined on ([0, 1], 2[0,1]), where 2[0,1] denotes the �-algebra

of all subsets of [0, 1], such that P ({x}) = 0 for all x 2 [0, 1] [Billingsley, 1995, p. 46]. Therefore, �

cannot be extended to all subsets of [0, 1]. This shows the need to restrict attention to the �-algebra

of Borel sets, where a unique extension of � exists. (Lebesgue measure can be uniquely extended to

even more general sets, but this is not of interest here.)

The following properties of a probability measure are straightforward consequences of axioms A1–A3

plus the requirement that P (S) = 1:

P1. P (Ec) = 1� P (E).

P2. If E ✓ F then P (E)  P (F ).

P3. P (E [ F ) = P (E) + P (F )� P (E \ F ).

P4. (Union Bound) For any sequence of events E1, E2, . . .

P

 1[

n=1

En

!


1X

n=1

P (En) . (A.10)

P5. (Continuity from below.) If {En;n = 1, 2, . . .} is an increasing sequence of events, then

P (En) " P

 1[

n=1

En

!
(A.11)

P6. (Continuity from above.) If {En;n = 1, 2, . . .} is an decreasing sequence of events, then

P (En) # P

 1\

n=1

En

!
(A.12)

Using P5 and P6 above, it is easy to show that

P
⇣
lim inf
n!1

En

⌘
 lim inf

n!1
P (En)  lim sup

n!1
P (En)  P

✓
lim sup
n!1

En

◆
. (A.13)
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From this, the general continuity of probability measure property follows: for any sequence of events

{En;n = 1, 2, . . .},

P
⇣
lim
n!1

En

⌘
= lim

n!1
P (En) . (A.14)

In some cases, it can be easy to determine the probability of limsup and liminf events. For ex-

ample, it follows from (A.13) that mere convergence of P (En) to 1 or 0 as n ! 1 implies that

P (lim supn!1En) = 1 and P (lim infn!1En) = 0, respectively. In the general case, it may not

be simple to determine the value of these probabilities. The Borel-Cantelli Lemmas give su�-

cient conditions for the probability of limsup to be 0 and 1 (through the identity P (lim inf En) =

1� P (lim supEc), corresponding results on the probability of liminf can be derived).

Theorem A.1. (First Borel-Cantelli Lemma.) For any sequence of events E1, E2, . . .
1X

n=1

P (En) < 1 ) P ([En i.o.]) = 0 . (A.15)

Proof. Continuity of probability measure and the union bound allow one to write

P ([En i.o.]) = P

 1\

n=1

1[

i=n

Ei

!
= P

 
lim
n!1

1[

i=n

Ei

!
= lim

n!1
P

 1[

i=n

Ei

!
 lim

n!1

1X

i=n

P (Ei) . (A.16)

But if
P1

n=1
P (En) < 1 then the last limit must be zero, proving the claim. ⇧

The converse to the First Lemma holds if the events are independent.

Theorem A.2. (Second Borel-Cantelli Lemma.) For an independent sequence of events E1, E2, . . .,
1X

n=1

P (En) = 1 ) P ([En i.o.]) = 1 (A.17)

Proof. By continuity of probability measure,

P ([En i.o.]) = P

 1\

n=1

1[

i=n

Ei

!
= P

 
lim
n!1

1[

i=n

Ei

!
= lim

n!1
P

 1[

i=n

Ei

!
= 1� lim

n!1
P

 1\

i=n

Ec

i

!
,

(A.18)

where the last equality follows from DeMorgan’s Law. Now, by independence,

P

 1\

i=n

Ec

i

!
=

1Y

i=n

P (Ec

i ) =
1Y

i=n

(1� P (Ei)) (A.19)

From the inequality 1� x  e�x we obtain

P

 1\

i=n

Ec

i

!


1Y

i=1

exp(�P (Ei)) = exp

 
�

1X

i=n

P (Ei)

!
= 0 (A.20)

since, by assumption,
P1

i=n
P (Ei) = 1, for all n. From (A.18) and (A.20), P ([En i.o.]) = 1, as

required. ⇧
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A1.3 Conditional Probability and Independence

Given that an event F has occurred, for E to occur, E \ F has to occur. In addition, the sample

space gets restricted to those outcomes in F , so a normalization factor P (F ) has to be introduced.

Therefore, assuming that P (F ) > 0,

P (E | F ) =
P (E \ F )

P (F )
. (A.21)

For simplicity, it is usual to write P (E \F ) = P (E,F ) to indicate the joint probability of E and F .

From (A.21), one then obtains

P (E,F ) = P (E | F )P (F ) , (A.22)

which is known as the multiplication rule. One can also condition on multiple events:

P (E | F1, F2, . . . , Fn) =
P (E \ F1 \ F2 \ . . . \ Fn)

P (F1 \ F2 \ . . . \ Fn)
. (A.23)

This allows one to generalize the multiplication rule thus:

P (E1, E2, . . . , En) = P (En | E1, . . . , En�1)P (En�1 | E1, . . . , En�2) · · ·P (E2 | E1)P (E1) . (A.24)

The Law of Total Probability is a consequence of axioms of probability and the multiplication rule:

P (E) = P (E,F ) + P (E,F c) = P (E | F )P (F ) + P (E | F c)(1� P (F )) . (A.25)

This property allows one to compute a hard unconditional probability in terms of easier conditional

ones. It can be extended to multiple conditioning events via

P (E) =
nX

i=1

P (E,Fi) =
nX

i=1

P (E | Fi)P (Fi) , (A.26)

for pairwise disjoint Fi such that
S
Fi ◆ E.

One of the most useful results of probability theory is Bayes Theorem:

P (E | F ) =
P (F | E)P (E)

P (F )
=

P (F | E)P (E)

P (F | E)P (E) + P (F | Ec)(1� P (E)))
(A.27)

Bayes Theorem can be interpreted as a way to (1) “invert” the probability P (F | E) to obtain

the probability P (E | F ); or (2) “update” the “prior” probability P (E) to obtain the “posterior”

probability P (E | F ).

Events E and F are independent if the occurrence of one does not carry information as to the

occurrence of the other. That is, assuming that all events have nonzero probability,

P (E | F ) = P (E) and P (F | E) = P (F ). (A.28)
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Figure A.1: A real-valued random variable.

It is easy to see that this is equivalent to the condition

P (E,F ) = P (E)P (F ) . (A.29)

If E and F are independent, so are the pairs (E,F c), (Ec,F ), and (Ec,F c). However, E being

independent of F and G does not imply that E is independent of F \G. Furthermore, three events

E, F , G are independent if P (E,F,G) = P (E)P (F )P (G) and each pair of events is independent.

This can be extended to independence of any number of events, by requiring that the joint probability

factor and that all subsets of events be independent.

Finally, we remark that P (·|F ) is a probability measure, so that it satisfies all properties mentioned

previously. In particular, it is possible to define the notion of conditional independence of events.

A1.4 Random Variables

A random variable can be thought of roughly as a “random number.” Formally, a random variable

X defined on a probability space (S,F , P ) is a measurable function X between (S,F) and (R,B)

(see Section A1.1 for the required definitions). Thus, a random variable X assigns to each outcome

! 2 S a real number X(!) — see Figure A.1 for an illustration.

By using properties of the inverse set function, it is easy to see that the set function

PX(B) = P (X 2 B) = P (X�1(B)) , for B 2 B , (A.30)

is a probability measure on (R,B), called the distribution or law of X. (Note that PX is well defined,

since X is assumed measurable, and thus X�1(B) is an event in F , for each B 2 B.) If PX = PY

then X and Y are identically distributed. This does not mean they are identical: take X and Y to

be uniform over [0, 1] with Y = 1 � X. In this case, PX = PY but P (X = Y ) = 0. On the other

hand, if P (X = Y ) = 1, then X and Y are identically distributed.
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An alternative characterization of a random variable X is provided by the cumulative distribution

function (CDF) FX : R ! [0, 1], defined by

FX(x) = PX((�1, x]) = P (X  x), x 2 R. (A.31)

It can be seen that the CDF has the following properties:

F1. FX is non-decreasing: x1  x2 ) F (x1)  F (x2).

F2. limx!�1 FX(x) = 0 and limx!+1 FX(x) = 1.

F3. FX is right-continuous: lim
x!x

+
0
FX(x) = FX(x0).

The following remarkable theorem states that the information in the set function PX is equivalent

to the information in the point function FX ; for a proof, see [Rosenthal, 2006, Prop. 6.0.2].

Theorem A.3. Let X and Y be two random variables (possibly defined on two di↵erent probability

spaces). Then PX = PY if and only if FX = FY .

Furthermore, it can be shown that given a probability measure PX on (R,B), there is a random

variable X defined on some probability space that has PX for its distribution; and equivalently,

given any function FX satisfying properties F1-F3 above, there is an X that has FX as its CDF

[Billingsley, 1995, Thm 14.1].

If X1, . . . , Xn are jointly-distributed random variables (i.e., defined on the same probability space)

then they are said to be independent if

P ({X1 2 B1} \ . . . \ {Xn 2 Bn}) = PX1(B1) · · ·PXn(Bn) , (A.32)

for any Borel sets B1, . . . , Bn. Equivalently, they are independent if

P ({X1  x1} \ . . . \ {Xn  xn}) = FX1(x1) · · ·FXn(xn) , (A.33)

for any points x1, . . . xn 2 R. If in addition PX1 = · · · = PXn , or equivalently, FX1 = · · · = FXn ,

then X1, . . . , Xn are independent and identically distributed (i.i.d.) random variables.

Discrete Random Variables

If the distribution of a random variable X is concentrated on a countable number of points x1, x2, . . .,

i.e., PX({x1, x2, . . .}) = 1, then X is said to be a discrete random variable. For example, let X be

the numerical outcome of the roll of a six-sided. Then PX is concentrated on the set {1, 2, 3, 4, 5, 6}.
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Figure A.2: The CDF and PMF of a uniform discrete random variable.

The CDF FX for this example can be seen in Figure A.2. As seen in this plot, FX is a “staircase”

function, with “jumps” located at the points masses in PX . This is a general fact for any discrete

random variable X.

A discrete random variable X can thus be completely specified by the location and size of the jumps

in FX (since that specifies FX). In other words, a discrete random variable X is specified by its

probability mass function (PMF), defined by

pX(xk) = P (X = xk) = FX(xk)� FX(xk�) , (A.34)

at all points xk 2 R such that PX({xk}) > 0. See Figure A.2 for the PMF in the previous die-rolling

example.

Clearly, discrete random variables X1, . . . , Xn are independent if

P ({X1 = xk1} \ . . . \ {Xn = xkn}) , = pX1(xk1) · · · pXn(xkn) (A.35)

at all sets of points where the corresponding PMFs are defined.

Useful discrete random variables include the already mentioned uniform r.v. over a finite set of

numbers K with PMF

pX(xk) =
1

|K|
, k 2 K , (A.36)

the Bernoulli with parameter 0 < p < 1, with PMF

pX(0) = 1� p ,

pX(1) = p ,
(A.37)

the Binomial with parameters n 2 {1, 2, . . .} and 0 < p < 1, such that

pX(xk) =

✓
n

k

◆
pk(1� p)n�k, k = 0, 1, . . . , n , (A.38)
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the Poisson with parameter � > 0, such that

pX(xk) = e��
�k

k!
, k = 0, 1, . . . (A.39)

and the Geometric with parameter 0 < p < 1 such that

pX(xk) = (1� p)k�1p , k = 1, 2, . . . (A.40)

A binomial r.v. with parameters n and p has the distribution of a a sum of n i.i.d. Bernoulli r.v.s

with parameter p.

Continuous Random Variables

The transition from discrete to continuous random variables is nontrivial. A continuous random

variable X should have the following two smoothness properties:

C1. FX is continuous, i.e., it contains no jumps; i.e., P (X = x) = 0 for all x 2 R.

C2. There is a nonnegative function pX such that

P (a  X  b) = FX(b)� FX(a) =

Z
b

a

pX(x) dx , (A.41)

for a, b 2 R, with a  b. In particular,
R1
�1 pX(x) dx = 1.

It follows from the properties of the integral that C2 implies C1. However, it is one of the surprising

facts of probability theory that C1 does not imply C2: there are continuous CDFs that do not

satisfy C2. The counterexamples are admittedly exotic. For instance, the Cantor function is a

continuous increasing function defined on the interval [0, 1], which has derivative equal to zero on

the complement of the Cantor set, i.e., almost everywhere, but grows continuously from 0 to 1. The

Cantor function is constant almost everywhere, but manages to grow continuously, without jumps.

Such functions are called singular (or “devil staircases” in the popular literature). The Cantor

function (suitably extended outside the interval [0, 1]) defines a continuous CDF that cannot satisfy

C2. Such exotic examples can be ruled out if one requires the CDF to have a smoothness property

known as absolute continuity (which is more stringent than simple continuity). In fact, it can be

shown that absolute continuity of FX is equivalent to C2. It is also equivalent to the requirement

that P (X 2 B) = 0 for any Borel set B of measure zero, not simply on isolated points, as in C1, or

countable set of points. It can indeed be shown that any CDF can be decomposed uniquely into a

sum of a discrete, singular, and absolute continuous components.1

1
For proofs and more details, the reader is referred to Sections 31 and 32 of Billingsley [1995] and Chapter 1 of

Chung [1974]. The construction of the Cantor function is described in Chapter 7 of Schroeder [2009].
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Figure A.3: The CDF and PDF of a uniform continuous random variable.

The definition of a continuous random variable X requires FX to be absolutely continuous, not

simply continuous, in which case C2 is satisfied, and pX is called a probability density function

(PDF). (Perhaps it would be more appropriate to call these absolutely continuous random variables,

but the terminology “continuous random variable” is entrenched.) See Figure A.3 for an illustration

of the CDF and PDF of a uniform continuous random variable. The CDF of a continuous random

variable does not have to be di↵erentiable everywhere (in this example, it fails to be di↵erentiable at

a and b). But where it is di↵erentiable, dFX(x)/dx = pX(x) (the density can take arbitrary values

where FX is not di↵erentiable, and this happens at most over a set of Lebesgue measure zero).

Useful continuous random variables include the already mentioned uniform r.v. over the interval

[a, b], with density

pX(x) =
1

b� a
, a < x < b , (A.42)

the univariate Gaussian r.v. with parameters µ and � > 0, such that

pX(x) =
1

p

2⇡�2
exp

✓
�
(x� µ)2

2�2

◆
, x 2 R , (A.43)

the exponential r.v. with parameter � > 0, such that

pX(x) = �e��x , x � 0 (A.44)

the gamma r.v. with parameters �, t > 0, such that

pX(x) =
�e��x(�x)t�1

�(t)
, x � 0 , (A.45)

where�( t) =
R1
0

e�uut�1du, and the beta r.v. with parameters a, b > 0, such that:

pX(x) =
1

B(a, b)
xa�1(1� x)b�1, 0 < x < 1 , (A.46)

where B(a, b) =�( a + b)/�(a)�(b). Among these, the Gaussian is the only one defined over the

entire real line; the exponential and gamma are defined over the nonnegative real numbers, while

the uniform and beta have bounded support. In fact, the uniform r.v. over [0, 1] is just a beta with

a = b = 1, while an exponential r.v. is a gamma with t = 1.
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General Random Variables

There are random variables that are neither continuous nor discrete. Of course, an example of that is

a↵orded by a mixture of a discrete random variable and a continuous random variable. The CDF of

such a mixed random variable has jumps, but it is not a staircase function. However, there are more

general random variables that are not mixtures of this kind; e.g., the random variable corresponding

to the Cantor CDF.

A1.5 Joint and Conditional Distributions

The joint CDF of two jointly-distributed random variablesX and Y is a function FXY : R⇥R ! [0, 1]

defined by

FXY (x, y) = P ({X  x} \ {Y  y}) = P (X  x, Y  y), x, y 2 R . (A.47)

This is the probability of the “lower-left quadrant” with corner at (x, y). Note that FXY (x,1) =

FX(x) and FXY (1, y) = FY (y). These are called the marginal CDFs.

If X and Y are jointly-distributed continuous random variables, then we define the joint density

pXY (x, y) =
@2FXY (x, y)

@x@y
x, y 2 R , (A.48)

at all points where the derivative is defined. The joint density function pXY (x, y) integrates to 1

over R2. The marginal densities are given by

pX(x) =

Z 1

�1
pXY (x, y) dy , x 2 R ,

pY (y) =

Z 1

�1
pXY (x, y) dx , y 2 R ,

(A.49)

The random variables X and Y are independent if pXY (x, y) = pX(x)pY (y), for all x, y 2 R. It can

be shown that if X and Y are independent and Z = X + Y then

pZ(z) =

Z 1

�1
pX(x)pY (z � x) dx , z 2 R , (A.50)

with a similar expression in the discrete case for the corresponding PMFs. The above integral is

known as the convolution integral.

If pY (y) > 0, the conditional density of X given Y = y is defined by:

pX|Y (x | y) =
pXY (x, y)

pY (y)
, x 2 R . (A.51)



A1. PROBABILITY THEORY 299

For an event E, the conditional probability P (E | Y = y) needs care if Y is a continuous random

variable, as P (Y = y) = 0. But as long as pY (y) > 0, this probability can be defined (the details

are outside of the scope of this review):

P (E | Y = y) =

Z

E

pX|Y (x | y) dx . (A.52)

The “Law of Total Probability” for random variables is a generalization of (A.26):

P (E) =

Z 1

�1
P (E | Y = y) pY (y) dy . (A.53)

The concepts of joint PMF, marginal PMFs, and conditional PMF can defined in a similar way. For

conciseness, this is omitted in this review.

A1.6 Expectation

The expectation of a random variable has several important interpretations: 1) its average value

(weighted by the probabilities); 2) a summary of its distribution (sometimes referred to as a “location

parameter”); 3) a prediction of its future value. The latter meaning is the most important one for

pattern recognition and machine learning.

Expectation can be formalized by using the notion of integration, which we briefly review next. For

a measure space (S,F , µ) and a Borel-measurable function f : S ! R, one defines the integral
Z
f dµ =

Z
f(!)µ(d!) (A.54)

as a number in R [{�1 ,1}, as follows. First, if f = IA is the indicator of a set A 2 F , thenR
f dµ = µ(A), i.e., integrating a constant “1” over a set produces just the measure of that set.

Next, if f =
P

n

i=1
xiIAi , where the xi 2 R and the Ai are measurable sets that partition S, then

Z
f dµ =

nX

i=1

xiµ(Ai) . (A.55)

Such a function f is called simple, as it takes on a finite number of values x1, . . . , xn, with f�1({xi}) =

Ai, for i = 1, . . . , n. Next, for general nonnegative function f , one defines its integral as
Z
f dµ = sup

⇢Z
g dµ

�� g : S ! R is simple and g  f

�
. (A.56)

Finally, for general f , define nonnegative functions f+(!) = f(!)If(!)>0 and f�(!) = �f(!)If(!)0.

Clearly, f = f+
� f�, so the integral of f is defined as

Z
f dµ =

Z
f+ dµ �

Z
f� dµ , (A.57)
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provided that at least one of
R
f+ dµ and

R
f� dµ is finite. If both are finite, then �1 <

R
f dµ < 1,

and f is said to be integrable with respect to measure µ. Since |f | = f+ + f�, f is integrable if and

only if
R
|f | dµ < 1. If

R
f+ dµ =

R
f� dµ = 1, then the integral of f is not defined at all.

The integral ignores everything that happens over sets of measure zero: if f = g outside a set

of measure zero, then
R
f dµ =

R
g dµ. Hence, if f = 0 a.e., then

R
f dµ = 0, and the integral of

nonnegative f is positive if and only if f > 0 over a set of nonzero measure.

The integral of f over a set A 2 F is defined as
R
A
f dµ =

R
IAf dµ, if it exists. If f is nonnegative,

then ⌫(A) =
R
A
f dµ defines a measure on (S,F), and f is called a density of ⌫ with respect to µ

(densities are unique up to sets of µ-measure zero). It is clear that ⌫(A) = 0 whenever µ(A) = 0;

any measure ⌫ with this property is said to be absolutely continuous with respect to µ (this is a

generalization of the previous definition, as we comment below). The following theorem can be

proved by showing that it holds for indicators, simple functions, and then nonnegative functions

through (A.56).

Theorem A.4. If g : S ! R is integrable and f : S ! R is a density of ⌫ with respect to µ, then
Z

g(!) ⌫(d!) =

Z
g(!)f(!)µ(d!) . (A.58)

The general integral has all the properties with which one if familiar in Calculus, such as linearity:

it can be shown that if f and g are integrable and a and b are constants, then
Z
(af + bg) dµ = a

Z
f dµ + b

Z
g dµ . (A.59)

If the measure space is (R,B,�) then the integral of a function f : R ! R,
Z
f d �=

Z
f(x)�(dx) (A.60)

is the Lebesgue integral of f , if it exists. It can be shown that the Lebesgue integral coincides with the

usual Riemann integral, whenever the latter exists. But the full generality of the Lebesgue integral is

needed to integrate complicated functions, or functions over complicated sets. The classical example

is provided by the function f : R ! R defined as f(x) = 1 if x is rational, and f(x) = 0, otherwise.

Notice that f = IQ, the indicator of the set of rationals Q. This function is extremely irregular

(discontinuous and nondi↵erentiable at every point) and not Riemann-integrable. However, f is

measurable and Lebesgue-integrable, with
R
f(x)�(dx) = �(Q) = 0. All integrals mentioned before

in this Appendix, including (A.41), should be considered to be Lebesgue integrals.

Now, given a random variable X defined on a probability space (S,F , P ), the expectation E[X] is

simply the integral of X over S according to the probability measure P :

E[X] =

Z
X dP =

Z
X(!)P (d!) , (A.61)
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if it exists. So expectation is an integral, and all definitions and properties mentioned previously in

this section apply; e.g., we get the familiar formulas E[IE ] = P (E), for an event E, and

E[aX + bY ] = aE[X] + b[Y ] , (A.62)

for jointly-distributed integrable random variables X and Y and constants a and b, as in (A.59).

This extends to any finite number of random variables, by induction. One of the most important

results of probability theory is stated next, without proof.

Theorem A.5. (Change of Variable Theorem.) If g : R ! R is a measurable function, then

E[g(X)] =

Z

S

g(X(!))P (d!) =

Z 1

�1
g(x)PX(dx) , (A.63)

where PX is the distribution of X, defined in (A.30).

Hence, expectations can be computed by integration over the real line. The previous theory is

entirely general, and applies equally well to continuous, discrete, and more general random variables.

If X is continuous, then it satisfies (A.41), where the integral should be interpreted as Lebesgue

integral over the interval [a, b]. It can be shown then that pX is a density for the distribution PX

with respect to Lebesgue measure. Combining Theorems A.4 and A.5 produces the familiar formula:

E[g(X)] =

Z 1

�1
g(x) pX(x) dx , (A.64)

where the integral is the Lebesgue integral, which reduces to the ordinary integral if the integrand

is Riemann-integrable. If g(x) = x, one gets the usual definition E[X] =
R
x pX(x) dx.

On the other hand, if X is discrete, then PX is concentrated on a countable number of points

x1, x2, . . ., and Thm A.5 produces

E[g(X)] =
1X

k=1

g(xk) pX(xk) , (A.65)

if the sum is well-defined. If g(x) = x, we get the familiar formula E[X] =
P1

k=1
xk pX(xk).

From now on we assume that random variables are integrable. If f : R ! R is Borel-measurable

and concave (i.e., f lies at or above a line joining any of its points) then Jensen’s Inequality is:

E[f(X)]  f(E[X]) . (A.66)

It can be shown that X and Y are independent if and only if E[f(X)g(Y )] = E[f(X)]E[g(Y )] for

all Borel-measurable functions f, g : R ! R. If this condition is satisfied for at least f(X) = X and
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g(Y ) = Y , that is, if E[XY ] = E[X]E[Y ], then X and Y are said to be uncorrelated. Of course,

independence implies uncorrelatedness. The converse is only true in special cases; e.g. jointly

Gaussian random variables.

Holder’s Inequality states that, for 1 < r < 1 and 1/r + 1/s = 1,

E[|XY |]  E[|X|
r]1/rE[|Y |

s]1/s. (A.67)

The special case r = s = 2 results in the Cauchy-Schwarz Inequality:

E[|XY |] 
p
E[X2]E[Y 2] . (A.68)

The expectation of a random variable X is a↵ected by its probability tails, given by FX(a) = P (X 

a) and 1 � FX(a) = P (X � a). If the probability tails on both sides fail to vanish su�ciently fast

(X has “fat tails”), then X will not be integrable and E[X] is undefined. The standard example

is the Cauchy random variable, with density pX(x) = [⇡(1 + x2)]�1. For a nonnegative random

variable X, there is only one probability tail, the upper tail P (X > a), and there is a simple formula

relating E[X] to it:

E[X] =

Z 1

0

P (X > x) dx . (A.69)

A small E[X] constrain the upper tail to be thin. This is guaranteed by Markov’s inequality: if X

is a nonnegative random variable,

P (X � a) 
E[X]

a
, for all a > 0 . (A.70)

Finally, a particular result that if of interest to our purposes relates an exponentially-vanishing

upper tail of a nonnegative random variable to a bound on its expectation.

Lemma A.1. If X is a non-negative random variable such that P (X > t)  ce�at
2
, for all t > 0

and given a, c > 0, we have

E[X] 

r
1 + ln c

a
. (A.71)

Proof. Note that P (X2 > t) = P (X >
p
t)  ce�at. From (A.69) we get:

E[X2] =

Z 1

0

P (X2 > t) dt =

Z
u

0

P (X2 > t) dt+

Z 1

u

P (X2 > t) dt

 u+

Z 1

u

ce�at dt = u+
c

a
e�au .

(A.72)

By direct di↵erentiation, it is easy to verify that the upper bound on the right hand side is minimized

at u = (ln c)/a. Substituting this value back into the bound leads to E[X2]  (1 + ln c)/a. The

result then follows from the fact that E[X] 
p
E[X2]. ⇧
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If the second moment exists, the variance Var(X) of a random variable X is a nonnegative quantity

defined by:

Var(X) = E[(X � E[X])2] = E[X2]� (E[X])2. (A.73)

The variance of a random variable can be interpreted as: 1) its “spread” around the mean; 2) a

second summary of its distribution (the “scale parameter”); 3) the uncertainty in the prediction of

its future value by its expectation.

The following property follows directly from the definition:

Var(aX + c) = a2Var(X) . (A.74)

A small variance constrains the random variable to be close to its mean with high probability. This

follows from Chebyshev’s Inequality:

P (|X � E[X]| � ⌧) 
Var(X)

⌧2
, for all ⌧ > 0 . (A.75)

Chebyshev’s inequality follows directly from the application of Markov’s Inequality (A.70) to the

random variable |X � E[X]|2 with a = ⌧2.

Expectation has the linearity property, so that, given any pair of jointly distributed random variables

X and Y , it is always true that E[X + Y ] = E[X] + E[Y ] (provided that all expectations exist).

However, it is not always true that Var(X + Y ) = Var(X) + Var(Y ). In order to investigate this

issue, it is necessary to introduce the covariance between X and Y :

Cov(X,Y ) = E[(X � E[X])(Y � E[Y ])] = E[XY ]� E[X]E[Y ] . (A.76)

If Cov(X,Y ) > 0 then X and Y are positively correlated; otherwise, they are negatively correlated.

Clearly, X and Y are uncorrelated if and only if Cov(X,Y ) = 0. Clearly, Cov(X,X) = Var(X). In

addition, Cov(
P

n

i=1
Xi,

P
m

j=1
Yj) =

P
n

i=1

P
m

j=1
Cov(Xi, Yj).

Now, it follows directly from the definition of variance that

Var(X1 +X2) = Var(X1) + Var(X2) + 2Cov(X1, X2) . (A.77)

This can be extended to any number of random variables by induction:

Var

 
nX

i=1

Xi

!
=

nX

i=1

Var(Xi) + 2
X

i<j

Cov(Xi, Xj) . (A.78)

Hence, the variance is distributive over sums if all variables are pairwise uncorrelated. o It follows di-

rectly from the Cauchy-Schwarz Inequality (A.68) that |Cov(X,Y )| 
p
Var(X)Var(Y ). Therefore,

the covariance can be normalized to be in the interval [�1, 1] thus:

⇢(X,Y ) =
Cov(X,Y )p
Var(X)Var(Y )

, (A.79)
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with �1  ⇢(X,Y )  1. This is called the correlation coe�cient between X and Y . The closer |⇢|

is to 1, the tighter is the relationship between X and Y . The limiting case where ⇢(X,Y ) = ±1

occurs if and only if Y = a± bX, i.e., X and Y are perfectly related to each other through a linear

(a�ne) relationship. For this reason, ⇢(X,Y ) is sometimes called the linear correlation coe�cient

between X and Y ; it does not respond to nonlinear relationships.

Conditional expectation allows the prediction of the value of a random variable given the observed

value of the other, i.e., prediction given data, while conditional variance yields the uncertainty of

that prediction.

If X and Y are jointly continuous random variables and the conditional density pX|Y (x | y) is well

defined for Y = y, then the conditional expectation of X given Y = y is:

E[X | Y = y] =

Z 1

�1
x pX|Y (x | y) dx (A.80)

with a similar definition for discrete random variables using conditional PMFs.

The conditional variance of X given Y = y is defined using conditional expectation as:

Var(X | Y = y) = E[(X � E[X | Y = y])2 | Y = y] = E[X2
| Y = y]� (E[X | Y = y])2 . (A.81)

Most of the properties of expectation and variance apply without modification to conditional ex-

pectations and conditional variances, respectively. For example, E[
P

n

i=1
Xi | Y = y] =

P
n

i=1
E[Xi |

Y = y] and Var(aX + c | Y = y) = a2Var(X | Y = y).

Now, both E[X | Y = y] and Var(X | Y = y) are deterministic quantities for each value of Y = y

(just as the ordinary expectation and variance are). But if the specific value Y = y is not specified

and allowed to vary, then we can look at E[X | Y ] and Var(X | Y ) as functions of the random

variable Y , and therefore, random variables themselves. The reasons why these are valid random

variables are nontrivial and beyond the scope of this review.

One can show that the expectation of the random variable E[X | Y ] is precisely E[X]:

E[E[X | Y ]] = E[X] . (A.82)

An equivalent statement is:

E[X] =

Z 1

�1
E[X | Y = y] p(y) dy , (A.83)

with a similar expression in the discrete case. Paraphrasing the Law of Total Probability (A.26),

the previous equation might be called the Law of Total Expectation.

On the other hand, it is not the case that Var(X) = E[Var(X | Y )]. The answer is slightly more

complicated:

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]) . (A.84)
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This is known as the Conditional Variance Formula. It is an “analysis of variance” formula, as it

breaks down the total variance of X into a “within-rows” component and an “across-rows” compo-

nent. One might call this the Law of Total Variance. This formula plays a key role in Chapter 7.

Now, suppose one is interested in predicting the value of a random variable Y using a predictor Ŷ .

One would like Ŷ to be optimal according to some criterion. The criterion most widely used is the

mean-square error:

MSE = E[(Y � Ŷ )2] . (A.85)

It can be shown easily that the minimum mean-square error (MMSE) estimator is simply the mean:

Ŷ ⇤ = E[Y ]. This is a constant estimator, since no data are available. Clearly, the MSE of Ŷ ⇤ is

simply the variance of Y . Therefore, the best one can do in the absence of any extra information is

to predict the mean E[Y ], with an uncertainty equal to the variance Var(Y ).

If Var(Y ) is very small, i.e., if there were very small uncertainty in Y to begin with, then E[Y ] could

actually be an acceptable estimator. In practice, this is rarely the case. Therefore, observations

on an auxiliary random variable X (i.e., data) are sought to improve prediction. Naturally, it is

known (or hoped) that X and Y are not independent, otherwise no improvement over the constant

estimator is possible. One defines the conditional MSE of a data-dependent estimator Ŷ = h(X) as

MSE (X) = E[(Y � h(X))2 | X] . (A.86)

By taking expectation over X, one obtains the unconditional MSE: E[(Y �h(X))2]. The conditional

MSE is often the most important one in practice, since it concerns the particular data at hand,

while the unconditional MSE is data-independent and used to compare the performance of di↵erent

predictors. Regardless, the MMSE estimator in both cases is the conditional mean h⇤(X) = E[Y | X],

as shown in Chapter 11. This is one of the most important results in supervised learning. The

posterior-probability function ⌘(x) = E[Y | X = x] is the optimal regression of Y on X. This is not

in general the optimal estimator if Y is discrete; e.g., in the case of classification. This is because

⌘(X) may not be in the range of values taken by Y , so it does not define a valid estimator. It is

shown in Chapter 2 that one needs to threshold ⌘(x) at 1/2 to obtain the optimal estimator (optimal

classifier) in the case Y 2 {0, 1}.

A1.7 Vector Random Variables

The previous theory can be extended to vector random variables, or random vectors, defined on

a probability space (S,F , P ). A random vector is a Borel-measurable function X : S ! Rd,

with a probability distribution PX defined on (Rd,Bd). The components of the random vector

X = (X1, . . . , Xd) are jointly-distributed random variables Xi on (S,F , P ), for i = 1, . . . , d.
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The expected value of X is the vector of expected values of the components, if they exist:

E[X] =

2

64
E[X1]

· · ·

E[Xd]

3

75 . (A.87)

The second moments of a random vector are contained in the d⇥ d covariance matrix:

⌃ = E[(X� µ)(X� µ)T ] , (A.88)

where⌃ ii = Var(Xi) and⌃ ij = Cov(Xi, Xj), for i, j = 1, . . . , d, and the expectation of the matrix is

defined as the matrix of the expected values of its components, assuming they exist. The covariance

matrix is real symmetric and thus diagonalizable:

⌃ = UDUT , (A.89)

where U is the orthogonal matrix of eigenvectors and D is the diagonal matrix of eigenvalues (a

review of basic matrix theory facts is given in Section A2). All eigenvalues are nonnegative (⌃is

positive semi-definite). In fact, except for “degenerate” cases, all eigenvalues are positive, and so⌃

is invertible (⌃is said to be positive definite in this case).

It is easy to check that the random vector

Y = ⌃� 1
2 (X� µ) = D� 1

2UT (X� µ) (A.90)

has zero mean and covariance matrix Id (so that all components of Y are zero-mean, unit-variance,

and uncorrelated). This is called whitening or the Mahalanobis transformation.

Given n independent and identically-distributed (i.i.d.) sample observations X1, . . . ,Xn of the ran-

dom vector X, then the maximum-likelihood estimator of µ = E[X], known as the sample mean, is

µ̂ =
1

n

nX

i=1

Xi . (A.91)

It can be shown that this estimator is unbiased (that is, E[µ̂] = µ) and consistent (that is, µ̂

converges in probability to µ as n ! 1; see Section A1.8 and Theorem A.12). On the other hand,

the sample covariance estimator is given by:

⌃̂ =
1

n� 1

nX

i=1

(Xi � µ̂)(Xi � µ̂)T . (A.92)

This is an unbiased and consistent estimator of⌃.
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The multivariate Gaussian distribution is probably the most important probability distribution in

Engineering and Science. The random vector X has a multivariate Gaussian distribution with mean

µ and covariance matrix⌃(assuming⌃invertible) if its density is given by

p(x) =
1p

(2⇡)d det(⌃)
exp

✓
�
1

2
(x� µ)T⌃�1(x� µ)

◆
. (A.93)

We write X ⇠ Nd(µ,⌃).

The multivariate Gaussian has ellipsoidal contours of constant density of the form

(x� µ)T⌃�1(x� µ) = c2, c > 0 . (A.94)

The axes of the ellipsoids are given by the eigenvectors of⌃and the length of the axes are pro-

portional to its eigenvalues. In the case⌃= �2Id, where Id denotes the d ⇥ d identity matrix, the

contours are spherical with center at µ. This can be seen by substituting⌃= �2Id in (A.94), which

leads to the following equation for the contours:

||x� µ||2 = r2, r > 0 , (A.95)

If d = 1, one gets the univariate Gaussian distribution X ⇠ N (µ,� 2). With µ = 0 and � = 1, the

CDF of X is given by

P (X  x) = � (x) =

Z
x

�1

1

2⇡
e�

u2

2 du . (A.96)

It is clear that the function�( ·) satisfies the property�( �x) = 1� �(x).

The following are useful properties of a multivariate Gaussian random vector X ⇠ N (µ,⌃):

G1. The density of each component Xi is univariate gaussian N (µi,⌃ii).

G2. The components of X are independent if and only if they are uncorrelated, i.e.,⌃is a diagonal

matrix.

G3. The whitening transformationY = ⌃� 1
2 (X�µ) produces a multivariate gaussianY ⇠ N (0, Ip)

(so that all components of Y are zero-mean, unit-variance, and uncorrelated Gaussian random

variables).

G4. In general, if A is a nonsingular p ⇥ p matrix and c is a p-vector, then Y = AX + c ⇠

Np(Aµ+ c,A⌃AT ).

G5. The random vectors AX and BX are independent i↵ A⌃BT = 0.

G6. If Y and X are jointly multivariate Gaussian, then the distribution of Y given X is again

multivariate Gaussian.

G7. The best MMSE predictor E[Y | X] is a linear function of X.
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A1.8 Convergence of Random Sequences

It is often necessary in pattern recognition and machine learning to investigate the long-term behav-

ior of random sequences, such as the sequence of true or estimated classification error rates indexed

by sample size. In this section and the next, we review basic results about convergence of random

sequences. We consider only the case of real-valued random variables, but nearly all the definitions

and results can be directly extended to random vectors, with the appropriate modifications.

A random sequence {Xn; n = 1, 2, . . .} is a sequence of random variables. The standard modes of

convergence for random sequences are:

1. “Sure” convergence: Xn ! X surely if for all outcomes ! 2 S in the sample space one has

limn!1Xn(!) = X(!).

2. Almost-sure (a.s.) convergence or convergence with probability 1: Xn

a.s.
�! X if pointwise con-

verge fails only for an event of probability zero, i.e.:

P
⇣n
! 2 S

�� lim
n!1

Xn(!) = X(!)
o⌘

= 1 . (A.97)

3. Lp-convergence: Xn ! X in Lp, for p > 0, also denoted by Xn

L
p

�! X, if E[|Xn|
p] < 1 for

n = 1, 2, . . ., E[|X|
p] < 1, and:

lim
n!1

E[|Xn �X|
p] = 0 . (A.98)

The special case of L2 convergence is also called mean-square (m.s.) convergence.

4. Convergence in probability: Xn ! X in probability, also denoted by Xn

P
�! X, if the “proba-

bility of error” converges to zero:

lim
n!1

P (|Xn �X| > ⌧) = 0 , for all ⌧ > 0 . (A.99)

5. Convergence in Distribution : Xn ! X in distribution, also denoted by Xn

D
�! X, if the

corresponding CDFs converge:

lim
n!1

FXn(a) = FX(a) , (A.100)

at all points a 2 R where FX is continuous.

We state, without proof, the relationships among the various modes of convergence:

sure ) almost-sure

Lp

)
) probability ) distribution . (A.101)



A1. PROBABILITY THEORY 309

Hence, sure convergence is the strongest mode of convergence and convergence in distribution is

the weakest. However, sure convergence is unnecessarily demanding, and almost-sure convergence

is the strongest mode of convergence employed. On the other hand, convergence is distribution is

really convergence of CDFs, and does not have all the properties one expects from convergence. For

example, it can be shown that convergence Xn to X and Yn to Y in distribution does not imply in

general that Xn+Yn converges to X+Y in distribution, whereas this would be true for convergence

almost surely, in Lp, and in probability [Chung, 1974].

To show consistency of parametric classification rules (see Chapters 3 and 4), an essential fact about

convergence with probability 1 and in probability is that, similarly to ordinary convergence, they

are preserved by application of continuous functions. The following result is stated without proof.

Theorem A.6. (Continuous Mapping Theorem.) If f : R ! R is continuous a.e. with respect

to X, i.e. P (X 2 C) = 1, where C is the set of points of continuity of f , then

(i) Xn

a.s.
�! X implies that f(Xn)

a.s.
�! f(X).

(ii) Xn

P
�! X implies that f(Xn)

P
�! f(X).

(iii) Xn

D
�! X implies that f(Xn)

D
�! f(X).

A special case of interest is X = c, i.e., the distribution of X is a point mass at c. In this case, the

continuous mapping theorem requires f to be merely continuous at c.

The following classical result is stated here without proof.

Theorem A.7. (Dominated Convergence Theorem.) If there is an integrable random variable Y ,

i.e., E[|Y |] < 1, with P (|Xn|  Y ) = 1, for n = 1, 2, . . ., then Xn

P
�! X implies that E[Xn] ! E[X].

The next result provides a common way to show strong consistency (e.g., see Chapter 7). It is a

consequence of the First Borel-Cantelli Lemma, and it indicates that converge with probability 1 is

in a sense a “fast” form of convergence in probability.

Theorem A.8. If, for all ⌧ > 0, P (|Xn �X| > ⌧) ! 0 fast enough to obtain

1X

n=1

P (|Xn �X| > ⌧) < 1 , (A.102)

then Xn

a.s.
�! X.

Proof. First notice that a sample sequence Xn(!) fails to converge to X(!) if and only if there is a

⌧ > 0 such that |Xn(!)) �X(!)| > ⌧ infinitely often as n ! 1. Hence, Xn ! X a.s. if and only
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if P (|Xn � X| > ⌧) i.o.) = 0, for all ⌧ > 0. The result then follows from the First Borel-Cantelli

Lemma (see Thm. A.1). ⇧

The previous result implies that convergence in probability can produce convergence with probabil-

ity 1 along a subsequence, obtained by “downsampling” the original sequence, as shown next.

Theorem A.9. If Xn

P
�! X, then there is an increasing sequence of indices nk such that Xnk

a.s.
�! X.

Proof. Since P (|Xn �X| > ⌧) ! 0, for all ⌧ > 0, we can pick an increasing sequence of indices nk

such that P (|Xnk �X| > 1/k)  2�k. Given any ⌧ > 0, pick k⌧ such that 1/k⌧ < ⌧ . We have

1X

k=k⌧

P (|Xnk �X| > ⌧) 
1X

k=k⌧

P (|Xnk �X| > 1/k) 
1X

k=k⌧

2�k < 1 , (A.103)

so that Xnk

a.s.
�! X by Theorem A.8. ⇧

The previous theorem provides a criterion to disprove convergence Xn ! X in probability: it is

enough to show that there is no subsequence that converges to X with probability 1. This criterion

is used in Chapter 4 (see Example 4.4).

Notice also that if Xn is monotone and P (|Xn � X| > ⌧) ! 0, then P (|Xn � X| > ⌧) i.o.) = 0.

Hence, if Xn is monotone, Xn ! X in probability if and only if Xn ! X with probability 1 (see

the proof of Thm. A.8).

Stronger relations among the modes of convergence hold in special cases. In particular, we prove

below that Lp convergence and convergence in probability are equivalent if the random sequence

{Xn; n = 1, 2, . . .} is uniformly bounded, i.e., if there exists a finite K > 0, which does not depend

on n, such that

|Xn|  K ,with probability 1, for all n = 1, 2, . . . (A.104)

meaning that P (|Xn| < K) = 1, for all n = 1, 2, . . . The classification error rate sequence {"n; n =

1, 2, . . .} is an example of uniformly bounded random sequence, with K = 1, therefore this is an

important topic for our purposes. We have the following theorem.

Theorem A.10. Let {Xn; n = 1, 2, . . .} be a uniformly bounded random sequence. The following

statements are equivalent.

(1) Xn

L
p

�! X, for some p > 0.

(2) Xn

L
q

�! X, for all q > 0.

(3) Xn

P
�! X.
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Proof. First note that we can assume without loss of generality that X = 0, since Xn ! X if and

only if Xn � X ! 0, and Xn � X is also uniformly bounded, with E[|Xn � X|
p] < 1. Showing

that (1) , (2) requires showing that Xn ! 0 in Lp, for some p > 0 implies that Xn ! 0 in Lq, for

all q > 0. First observe that E[|Xn|
q]  E[Kq] = Kq < 1, for all q > 0. If q > p, the result is

immediate. Let 0 < q < p. With X = Xq
n, Y = 1 and r = p/q, Holder’s Inequality (A.67) yields

E[|Xn|
q]  E[|Xn|

p]q/p . (A.105)

Hence, if E[|Xn|
p] ! 0, then E[|Xn|

q] ! 0, proving the assertion. To show that (2) , (3), first we

show the direct implication by writing Markov’s Inequality (A.70) with X = |Xn|
p and a = ⌧p:

P (|Xn| � ⌧) 
E[|Xn|

p]

⌧p
, for all ⌧ > 0 . (A.106)

The right-hand side goes to 0 by hypothesis, and thus so does the left-hand side, which is equivalent

to (A.99) with X = 0. To show the reverse implication, write

E[|Xn|
p] = E[|Xn|

pI|Xn|<⌧ ] + E[|Xn|
pI|Xn|�⌧ ]  ⌧p +KpP (|Xn| � ⌧) . (A.107)

By assumption, P (|Xn| � ⌧) ! 0, for all ⌧ > 0, so that limE[|Xn|
p]  ⌧p. Since ⌧ > 0 is arbitrary,

this establishes the desired result. ⇧

The previous theorem implies that, for uniformly bounded random sequences, the relationships

among the modes of convergence become:

sure ) almost-sure )

(
Lp

probability

)
) distribution (A.108)

As a simple corollary of Theorem A.10, we have the following useful result, which is also a corollary

of Theorem A.7.

Theorem A.11. (Bounded Convergence Theorem.) If {Xn; n = 1, 2, . . .} is a uniformly bounded

random sequence and Xn

P
�! X, then E[Xn] ! E[X].

Proof. From the previous theorem, Xn

L
1

�! X, i.e., E[|Xn�X|] ! 0. But |E[Xn�X]|  E[|Xn�X|],

hence |E[Xn �X]| ! 0 and E[Xn �X] ! 0. ⇧

Example A.1. To illustrate these concepts, consider a sequence of independent binary random

variables X1, X2, . . . that take on values in {0, 1} such that

P ({Xn = 1}) =
1

n
, n = 1, 2, . . . (A.109)
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Then Xn

P
�! 0, since P (Xn > ⌧) ! 0, for every ⌧ > 0. By Theorem A.10, Xn

L
p

�! 0 as well. However,

Xn does not converge to 0 with probability 1. Indeed,

1X

n=1

P ({Xn = 1}) =
1X

n=1

P ({Xn = 0}) = 1 , (A.110)

and it follows from the 2nd Borel-Cantelli lemma that

P ([{Xn = 1} i.o.]) = P ([{Xn = 0} i.o.]) = 1, (A.111)

so that Xn does not converge with probability 1. However, if convergence of the probabilities to

zero is faster, e.g.

P ({Xn = 1}) =
1

n2
, n = 1, 2, . . . (A.112)

then
P1

n=1
P ({Xn = 1}) < 1 and Theorem A.8 ensures that Xn converges to 0 with probability 1.

⇧

In the previous example, note that, with P (Xn = 1) = 1/n, the probability of observing a 1 becomes

infinitesimally small as n ! 1, so the sequence consists, for all practice purposes, of all zeros for

large enough n. Convergence in probability and in Lp of Xn to 0 agrees with this fact, but the

lack of convergence with probability 1 does not. This is an indication that almost-sure convergence

may be too stringent a criterion to be useful in practice, and convergence in probability and in Lp

(assuming boundedness) may be enough. For example, this is the case in most signal processing

applications, where L2 is the criterion of choice. More generally, Engineering applications usually

concern average performance and rates of failure.

A1.9 Asymptotic Theorems

The classical asymptotic theorems in probability theory are the Law of Large Numbers and the

Central Limit Theorem, the proofs of which can be found, for example, in Chung [1974].

Theorem A.12. (Law of Large Numbers.) Given an i.i.d. random sequence {Xn; n = 1, 2, . . .}

with common finite mean µ,
1

n

nX

i=1

Xi

a.s.
�! µ . (A.113)

Theorem A.13. (Central Limit Theorem.) Given an i.i.d. random sequence {Xn; n = 1, 2, . . .}

with common finite mean µ and common finite variance �2,

1

�
p
n

 
nX

i=1

Xi � nµ

!
D
�! N (0, 1) . (A.114)
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The previous asymptotic theorems concern the behavior of a sum of n random variables as n ap-

proach infinity. It is also useful to have an idea of how partial sums di↵er from expected values

for finite n. This issue is addressed by the so-called concentration inequalities, the most famous of

which is Hoe↵ding’s inequality, derived in Hoe↵ding [1963].

Theorem A.14. (Hoe↵ding’s Inequality.) Given independent (not necessarily identically-distributed)

random variables W1, . . . ,Wn such that P (a  Wi  b) = 1, for i = 1, . . . , n, the sum Zn =
P

n

i=1
Wi

satisfies

P (|Zn � E[Zn]| � ⌧)  2e
� 2⌧2

n(a�b)2 , for all ⌧ > 0 . (A.115)

A2 Basic Matrix Theory

The material in this section is a summary of concepts and results from main matrix theory that are

useful in the text. For an in-depth treatment, see Horn and Johnson [1990].

We assume that the reader is familiar with the concepts of vector, matrix, matrix product, transpose,

determinant, and matrix inverse. We say that a set of vectors {x1, . . . ,xn} is linearly dependent if

the equation

a1x1 + · · ·+ anxn = 0 (A.116)

is satisfied for coe�cients a1, . . . , an that are not all zero. In other words, some of the vectors can

be written as a linear combination of other vectors. If a set of vectors is not linearly dependent,

then it is said to be linearly independent.

The rank of a matrix Am⇥n is the largest number of columns of A that form a linearly independent

set. This must be equal to the maximum number of rows that form a linearly independent set (row

rank = column rank). A square matrix An⇥n is nonsingular if the inverse A�1 exists, or equivalently,

the determinant |A| is nonzero. The following are useful facts:

• rank(A) = rank(AT ) = rank(AAT ) = rank(ATA), where AT denotes matrix transpose.

• rank(Am⇥n)  min{m,n}. If equality is achieved, A is said to be full-rank.

• An⇥n is nonsingular if and only if rank(A) = n, i.e., A is full-rank. By the definition of rank,

this means that the system of equations Ax = 0 has a unique solution x = 0..

• If Bm⇥m is nonsingular then rank(BAm⇥n) = rank(A) (multiplication by a nonsingular matrix

preserves rank).

• rank(Am⇥n) = rank(Bm⇥n) if and only if there are nonsingular matrices Xm⇥m and Yn⇥n such

that B = XAY .
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• If rank(Am⇥n) = k, then there is a nonsingular matrix Bk⇥k and matrices Xm⇥k and Yk⇥n

such that A = XBY .

• As a corollary from the previous fact, Am⇥n is a rank-1 matrix if A is a product of two vectors,

A = xyT , where the lengths of x and y are m and n, respectively.

An eigenvalue � of a square matrix An⇥n is a solution of the equation

Ax = �x , x 6= 0 , (A.117)

in which case x is an eigenvector of A associated with �. Complex � and x are allowed. The

following are useful facts:

• The eigenvalues of A and AT are the same.

• If A is real symmetric, then all its eigenvalues are real.

• Since A is singular if and only if Ax = 0 with nonzero x, we conclude that A is singular if and

only if it has a zero eigenvalue.

From (A.117), � is an eigenvalue if and only if (A��In)x = 0 with nonzero x. From previous facts,

we conclude that A��In is singular, that is, |A��In| = 0. But p(�) = |A��In| is a polynomial of

degree n, which thus has exactly n roots (allowing for multiplicity), so we have proved the following

useful fact.

Theorem A.15. Any square matrix An⇥n has exactly n (possibly complex) eigenvalues {�1, . . . ,�n},

which are the roots of the characteristic polynomial p(�) = |A� �In|.

If A is a diagonal matrix, then the eigenvalues are clearly the elements in its diagonal, so that

Trace(A) =
P

n

i=1
�i and |A| =

Q
n

i=1
�i. It is a remarkable fact that it is still true that Trace(A) =

P
n

i=1
�i and |A| =

Q
n

i=1
�i for any, not necessarily diagonal, square matrix A.

Matrix Bn⇥n is similar to matrix An⇥n if there is a nonsingular matrix Sn⇥n such that

B = S�1AS . (A.118)

It is easy to show that if A and B are similar, they have the same characteristic polynomial, and

therefore the same set of eigenvalues (however, having the same set of eigenvalues is not su�cient

for similarity).

Matrix A is said to be diagonalizable if it is similar to a diagonal matrix D. Since similarity preserves

the characteristic polynomial, the eigenvalues of A are equal to the elements in the diagonal of D.

The following theorem is not di�cult to prove.
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Theorem A.16. A matrix An⇥n is diagonalizable if and only if it has a set of n linearly independent

eigenvectors.

A real-valued matrix Un⇥n is said to be orthogonal if UTU = UUT = In, i.e., U�1 = UT . Clearly,

this happens if and only if the columns (and rows) of U are a set of unit-norm orthogonal vectors

in Rn. Matrix An⇥n is said to be orthogonally diagonalizable if it is diagonalizable by an orthogonal

matrix Un⇥n, i.e., A = UTDU , where D is diagonal. Since

The following theorem, stated without proof, is one of the most important results in matrix theory.

Theorem A.17. (Spectral Theorem.) If A is real symmetric, then it is orthogonally diagonalizable.

Therefore, of A is real symmetric, we can write A = UT⇤U and⇤= UAUT , where � is a diagonal

matrix containing the n eigenvalues of A on its diagonal. Furthermore, UA = ⇤U , and thus the

i � the column of U is the eigenvector of A associated with the eigenvalue in the i-the position of

the diagonal of⇤, for i = 1, . . . , n.

A real symmetric matrix An⇥n is said to be positive definite if

xTAx > 0 , for all x 6= 0 . (A.119)

If the condition is relaxed to xTAx � 0, then A is said to be positive semi definite. As we mentioned

in the text, a covariance matrix is always at least positive semi-definite.

The following theorem is not di�cult to prove.

Theorem A.18. A real symmetric matrix A is positive definite if and only if all its eigenvalues are

positive. It is positive semidefinite if and only if all eigenvalues are nonnegative.

In particular, a positive definite matrix A is nonsingular. Another useful fact is that A is positive

definite if and only if there is a nonsingular matrix C such that A = CCT .

A3 Basic Lagrange-Multiplier Optimization

In this section we review results from Lagrange Multiplier theory that are needed in Section 6.1.1.

For simplicity, we consider only minimization with inequality constraints, which is the case of the

linear SVM optimization problems (6.6) and (6.20). Our presentation follows largely Chapter 5 of

Boyd and Vandenberghe [2004], with some elements from Chapters 5 and 6 of Bertsekas [1995].
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Consider the general (not necessarily convex) optimization problem:

min f(x)

s.t. gi(x)  0 , i = 1, . . . , n .
(A.120)

where all functions are defined on Rd.

The primal Lagrangian functional is defined as

LP (x,�) = f(x) +
nX

i=1

�igi(x) , (A.121)

where �i is the Lagrange multiplier associated with constraint gi(x)  0 and � = (�1, . . . ,�n).

The dual Lagrangian functional is defined as:

LD(�) = inf
x2Rd

LP (x,�) = inf
x2Rd

 
f(x) +

nX

i=1

�igi(x)

!
. (A.122)

Using the properties of infimum, we have

LD(↵�1 + (1� ↵)�2) = inf
x2Rd

 
f(x) +

nX

i=1

(↵�1,i + (1� ↵)�2,i)gi(x)

!

= inf
x2Rd

 
↵

 
f(x) +

nX

i=1

�1,igi(x)

!
+ (1� ↵)

 
f(x) +

nX

i=1

�2,igi(x)

!!

� ↵ inf
x2Rd

 
f(x) +

nX

i=1

�1,igi(x)

!
+ (1� ↵) inf

x2Rd

 
f(x) +

nX

i=1

�2,igi(x)

!

= ↵LD(�1) + (1� ↵)LD(�2) ,

(A.123)

for all �1,�2 2 Rn and 0  ↵  1. The dual Lagrangian functional LD(�) is therefore a concave

function. Furthermore, for all x 2 F , where F is the feasible region of (A.120), and � � 0,

LP (x,�) = f(x) +
nX

i=1

�igi(x)  f(x) , (A.124)

since gi(x)  0, for i = 1, . . . , n. It follows that

LD(�) = inf
x2Rd

LP (x,�)  inf
x2F

f(x) = f(x⇤) , for all � � 0 , (A.125)

showing that LD(�) is a lower bound on f(x⇤), whenever � � 0.

The natural next step is to maximize this lower bound. This leads to the dual optimization problem:

max LD(�)

s.t. � � 0 .
(A.126)
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Since the cost LD(�) is concave (as shown previously) and the feasible region is a convex set, this is

a convex optimization problem, for which there are e�cient solution methods. This is true whether

or not the original problem (A.120) is convex.

If �⇤ is a solution of (A.126), then it follows from (A.125) that LD(�
⇤)  f(x⇤), which is known as

the weak duality property. If equality is achieved,

LD(�
⇤) = f(x⇤) , (A.127)

then the problem is said to satisfy the strong duality property. This property is not always satisfied,

but there are several sets of conditions, called constraint qualifications, that ensure strong duality.

For convex optimization problems with a�ne constraints, such as the linear SVM optimization

problems (6.6) and (6.20), a simple constraint qualification condition, known as Slater’s condition,

guarantees strong duality as long as the feasible region is nonempty.

The point (w̄, z̄), where w̄ 2 W and z̄ 2 Z, is a saddle point of a function h defined on W ⇥ Z if

h(ȳ, z̄) = inf
w2W

h(w, z̄) and h(ȳ, z̄) = sup
z2Z

h(w̄, z) . (A.128)

Under strong duality,

f(x⇤) = LD(�
⇤) = inf

x2Rd
LP (x,�

⇤) = inf
x2Rd

 
f(x) +

nX

i=1

�⇤i gi(x)

!

 LP (x
⇤,�⇤) = f(x⇤) +

nX

i=1

�⇤i gi(x
⇤)  f(x⇤) .

(A.129)

The first inequality follows from the definition of inf, whereas the second inequality follows from

the facts that �⇤
i
� 0 and gi(x⇤)  0, for i = 1, . . . , n. It follows from (A.129) that both inequalities

hold with equality. In particular,

LP (x
⇤,�⇤) = inf

x2Rd
LP (x,�

⇤) . (A.130)

On the other hand, it is always true that

sup
��0

LP (x
⇤,�) = sup

��0

 
f(x⇤) +

nX

i=1

�⇤i gi(x
⇤)

!
= f(x⇤) , (A.131)

because gi(x⇤)  0, for i = 1, . . . , n, so that f(x⇤) maximizes LP (x⇤,�) at � = 0. With the extra

condition of strong duality, we have from (A.129) that f(x⇤) = LP (x⇤,�⇤), so we obtain

LP (x
⇤,�⇤) = sup

��0

LP (x
⇤,�) . (A.132)
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It follows from (A.130) and (A.132) that strong duality implies that (x⇤,�⇤) is a saddle point of Lp(x,�).

It follows immediately from the general relations

f(x⇤) = sup
��0

LP (x
⇤,�) and LD(�

⇤) = inf
x2Rd

LP (x,�
⇤) (A.133)

that the converse is true: if (x⇤,�⇤) is a saddle point of Lp(x,�) then strong duality holds.

An optimal point (x⇤,�⇤), under strong duality, simultaneously minimizes LP (x,�) with respect

to x and maximizes LP (x,�) with respect to �. In particular, an optimal point (x⇤,�⇤) satisfies

x⇤ = arg min
x2Rd

LP (x,�
⇤) . (A.134)

Since this is an unconstrained minimization problem, necessary conditions for unconstrained min-

ima apply. In particular, assuming that f and gi are di↵erentiable, for i = 1, . . . , n, the general

stationarity condition must be satisfied:

rxLP (x
⇤,�⇤) = rxf(x

⇤) +
nX

i=1

�⇤irxgi(x
⇤) = 0 . (A.135)

Another consequence of (A.129) is

f(x⇤) = f(x⇤) +
nX

i=1

�⇤i gi(x
⇤) )

nX

i=1

�⇤i gi(x
⇤) = 0 , (A.136)

from which the following important complementary slackness conditions follow:

�⇤i gi(x
⇤) = 0 , i = 1, . . . , n . (A.137)

This means that if a constraint is inactive at the optimum, i.e., gi(x⇤) < 0, then the corresponding

optimal Lagrange multiplier �⇤
i
must be zero. Conversely, �⇤

i
> 0 implies that gi(x⇤) = 0, i.e., the

corresponding constraint is active (tight) at the optimum.

We can summarize all the previous results in the following classical theorem.

Theorem A.19. (Karush-Kuhn-Tucker Conditions). Let x⇤ be a solution of the original optimiza-

tion problem in (A.120), and let �⇤ be a solution of the dual optimization problem in (A.126) such

that strong duality is satisfied. Assume further that f and gi are di↵erentiable, for i = 1, . . . , n.

Then the following conditions must be satisfied:

rxLP (x
⇤,�⇤) = rxf(x

⇤) +
nX

i=1

�⇤irxgi(x
⇤) = 0 , (stationarity)

gi(x
⇤)  0 , i = 1, . . . , n , (primal feasibility)

�⇤i � 0 , i = 1, . . . , n , (dual feasibility)

�⇤i gi(x
⇤) = 0 , i = 1, . . . , n . (complementary slackness)

(A.138)

Furthermore, it can be shown that if the original optimization problem in (A.120) is convex with

a�ne constraints, then the KKT conditions are also su�cient for optimality.
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A4 Proof of the Cover-Hart Theorem

In this section we present proofs of Thm 5.1 and 5.3. The proof of Thm 5.1 follows the general

structure of the original proof in Cover and Hart [1967], with some di↵erences. This proof assumes

existence and continuity almost everywhere of the class-conditional densities. In Stone [1977] a more

general proof is given, which does not assume existence of densities (see also Chapter 5 of Devroye

et al. [1996]).

Proof of Theorem 5.1

First, one has to show that the nearest neighbor X(1)

n of a test point X converges to X as n ! 1.

The existence of densities makes this simple to show. First note that, for any ⌧ > 0,

P (||X(1)

n �X|| > ⌧) = P (||Xi �X|| > ⌧ ; i = 1, . . . , n) = (1� P (||X1 �X|| < ⌧))n . (A.139)

If we can show that P (||X1�X|| < ⌧) > 0, then it follows from (A.139) that P (||X(1)

n �X|| > ⌧) ! 0,

so that X(1)

n ! X in probability. Since X1 and X are independent and identically distributed with

density pX, X1 �X has a density pX1�X, given by the classical convolution formula:

pX1�X(x) =

Z

Rd
pX(x+ u) pX(u) du . (A.140)

From this, we have pX1�X(0) =
R
Rd p2X(x) du > 0. It follows, by continuity of the integral, that

pX1�X must be nonzero in a neighborhood of 0, i.e., P (||X1 �X|| < ⌧) > 0, as was to be shown.

Now, let Y 0
n denote the label of the nearest neighbor X(1)

n . Consider the conditional error rate

P ( n(X) 6= Y | X,X1, . . . ,Xn) = P (Y 0
n 6= Y | X,X(1)

n )

= P (Y = 1, Y 0
n = 0 | X,X(1)

n ) + P (Y = 0, Y 0
n = 1 | X,X(1)

n )

= P (Y = 1 | X)P (Y 0
n = 0 | X(1)

n ) + P (Y = 0 | X)P (Y 0
n = 1 | X(1)

n )

= ⌘(X)(1� ⌘(X(1)

n )) + (1� ⌘(X))⌘(X(1)

n )

(A.141)

where independence of (X(1)

n , Y 0
n) and (X, Y ) was used. We now use the assumption that the class-

conditional densities exist and are continuous a.e., which implies that ⌘ is continuous a.e. We

had established previously that X(1)

n ! X in probability. By the Continuous Mapping Theorem

(see Theorem A.6), ⌘(X(1)

n ) ! ⌘(X) in probability and

P ( n(X) 6= Y | X,X1, . . . ,Xn) ! 2⌘(X)(1� ⌘(X)) in probability. (A.142)

Since all random variables are bounded in the interval [0, 1], we can apply the Bounded Convergence

Theorem (see Thm. A.11) to obtain

E["n] = E[P ( n(X) 6= Y | X,X1, . . . ,Xn)] ! E[2⌘(X)(1� ⌘(X)] , (A.143)
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proving the first part of the theorem.

For the second part, let r(X) = min{⌘(X), 1�⌘(X)} and note that ⌘(X)(1�⌘(X)) = r(X)(1�r(X)).

It follows that

"NN = E[2⌘(X)(1� ⌘(X))] = E[2r(X)(1� r(X))]

= 2E[r(X)]E[(1� r(X))] + 2Cov(r(X), 1� r(X))

= 2"⇤(1� "⇤)� 2Var(r(X))  2"⇤(1� "⇤)  2"⇤,

(A.144)

as required.

Proof of Theorem 5.3

The proof of (5.13) and (5.14) follows the same structure as in the case k = 1. As before, the

first step is to show that the ith-nearest neighbor X(i)

n of X, for i = 1, . . . , k, converges to X in

probability as n ! 1. This is so because, for every ⌧ > 0,

P (||X(i)

n �X|| > ⌧) = P (||Xj �X|| > ⌧ ; j = k, . . . , n) = (1� P (||X1 �X|| < ⌧))n�k�1
! 0 ,

(A.145)

since P (||X1 �X|| < ⌧) > 0, as shown in the previous proof. Next, let the label of the ithe-nearest

neighbor X(i)

n of X by Y (i)

n , and consider the conditional error rate

P ( n(X) 6= Y | X,X1, . . . ,Xn)

= P (Y = 1,
P

k

i=1
Y (i)

n < k

2
| X,X(1)

n , . . . ,X(k)

n ) + P (Y = 0,
P

k

i=1
Y (i)

n > k

2
| X,X(1)

n , . . . ,X(k)

n )

= P (Y = 1 | X)P (
P

k

i=1
Y (i)

n < k

2
| X(1)

n , . . . ,X(k)

n )

+ P (Y = 0 | X)P (
P

k

i=1
Y (i)

n > k

2
| X(1)

n , . . . ,X(k)

n )

= ⌘(X)
P(k�1)/2

i=0
P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n )

+ (1� ⌘(X))
P

k

i=(k+1)/2
P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n ) ,
(A.146)

where

P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n ) =
X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

P (Y (j)

n = mj | X
(j)

n )

=
X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

⌘(X(j)

n )mj (1� ⌘(X(j)

n ))1�mj .

(A.147)

Using the previously established fact that X(j)

n ! X in probability, for i = 1, . . . , k, it follows

from the assumption of continuity of the distributions a.e. and the Continuous Mapping Theorem
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(see Theorem A.6) that

P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n )
P
�!

X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

⌘(X)mj (1� ⌘(X))1�mj

=

✓
k

i

◆
⌘(X)i(1� ⌘(X))k�i

(A.148)

and

P ( n(X) 6= Y | X,X1, . . . ,Xn)
P
�!

P(k�1)/2

i=0
⌘(X)i+1(1� ⌘(X))k�i

+
P

k

i=(k+1)/2
⌘(X)i(1� ⌘(X))k+1�i .

(A.149)

Since all random variables are bounded in the interval [0, 1], we can apply the Bounded Convergence

Theorem (see Thm. A.11) to obtain

E["n] = E[P ( n(X) 6= Y | X,X1, . . . ,Xn)]

! E
hP(k�1)/2

i=0
⌘(X)i+1(1� ⌘(X))k�i +

P
k

i=(k+1)/2
⌘(X)i(1� ⌘(X))k+1�i

i
,

(A.150)

establishing (5.13) and (5.14).

For the second part, as before, we let r(X) = min{⌘(X), 1� ⌘(X)} and note that ⌘(X)(1� ⌘(X)) =

r(X)(1 � r(X)). By symmetry, it is easy to see that ↵k(⌘(X)) = ↵k(r(X)). We seek an inequality

↵k(r(X))  akr(X), so that

"kNN = E[↵k(⌘(X))] = E[↵k(r(X))]  akE[r(X)] = ak"
⇤ , (A.151)

where ak > 1 is as small as possible. But as can be seen in Figure 5.8, ak corresponds to the slope

of the tangent line to ↵k(p), in the range p 2 [0, 1
2
], through the origin, so it must satisfy (5.21).

A5 Proof of Stone’s Theorem

In this section, we present a proof of Thm 5.4, which essentially follows the proof given by Devroye

et al. [1996]. The original proof in Stone [1977] is more general, relaxing the nonnegativity and

normalization assumptions (5.2) on the weights, while also showing that, under (5.2), the conditions

on the weights given in the theorem are both necessary and su�cient for universal consistency.

Proof of Theorem 5.4

It follows from Lemma 5.1, and the comment following it, that it is su�cient to show that

E|(⌘n(X)� ⌘(X))2] ! 0, as n ! 1. Introduce the smoothed posterior-probability function

⌘̃n(x) =
nX

i=1

Wn,i(x)⌘(Xi) . (A.152)
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This is not a true estimator, since it is a function of ⌘(x). However, it allows one to break the

problem down into two manageable parts:

E[(⌘n(X)� ⌘(X))2] = E[(⌘n(X)� ⌘̃n(X) + ⌘̃n(X)� ⌘(X))2]

 2E[(⌘n(X)� ⌘̃n(X))2] + 2E[(⌘̃n(X)� ⌘(X))2] ,
(A.153)

where the inequality follows from the fact that (a+ b)2  2(a2 + b2). The rest of the proof consists

in showing that E[(⌘n(X)� ⌘̃n(X))2] ! 0, and then showing that E[(⌘̃n(X)� ⌘(X))2] ! 0.

For the first part, notice that

E[(⌘n(X)� ⌘̃n(X))2] = E

2

4
 

nX

i=1

Wni(X)(Yi � ⌘(Xi)

!2
3

5

=
nX

i=1

nX

j=1

E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj)]

=
nX

i=1

nX

j=1

E [E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj) | X,X1, . . . ,Xn]]

(A.154)

Now, given X,X1, . . . ,Xn, Wni(X) and Wnj(X) are constants, and Yi � ⌘(Xi) and Yj � ⌘(Xj) are

zero-mean random variables. Furthermore, Yi � ⌘(Xi) and Yj � ⌘(Xj) are independent if i 6= j.

Therefore, E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj) | X,X1, . . . ,Xn] = 0, for i 6= j, and we obtain

E[(⌘n(X)� ⌘̃n(X))2] =
nX

i=1

E
⇥
W 2

ni(X)(Yi � ⌘(Xi)
2]
⇤

 E

"
nX

i=1

W 2

ni(X)

#
 E

"
max

i=1,...,n

Wn,i(x)
nX

i=1

Wni(X)

#
= E


max

i=1,...,n

Wn,i(x)

�
! 0,

(A.155)

by condition (ii) of Stone’s Theorem and the Bounded Convergence Theorem A.11.

The second part is more technical. First, given ⌧ > 0, find a function ⌘⇤ such that 0  ⌘⇤(x)  1, ⌘⇤

is PX-square-integrable, continuous, and has compact support, and E[(⌘⇤(X) � ⌘(X))2] < ⌧ . Such

a function exists, because ⌘(x) is PX-integrable (see Section 2.6.3), and therefore square-integrable,

since ⌘2(x)  ⌘(x), and the set of continuous function with compact support is dense in the set of
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square-integrable functions. Now, write

E[(⌘̃n(X)� ⌘(X))2] = E

2

4
 

nX

i=1

Wni(X)(⌘(Xi)� ⌘(X))

!2
3

5  E

"
nX

i=1

Wni(X)(⌘(Xi)� ⌘(X))2
#

= E

"
nX

i=1

Wni(X) ((⌘(Xi)� ⌘⇤(Xi)) + (⌘⇤(Xi)� ⌘⇤(X)) + (⌘⇤(X)� ⌘(X)))2
#

 3E

"
nX

i=1

Wni(X)
�
(⌘(Xi)� ⌘⇤(Xi))

2 + (⌘⇤(Xi)� ⌘⇤(X))2 + (⌘⇤(X)� ⌘(X))2
�
#

 3E

"
nX

i=1

Wni(X)(⌘(Xi)�⌘
⇤(Xi))

2

#
+ 3E

"
nX

i=1

Wni(X)(⌘⇤(Xi)�⌘
⇤(X))2

#
+ 3E

⇥
(⌘⇤(X)�⌘(X))2

⇤

= I + II + III ,
(A.156)

where the first inequality follows from Jensen’s Inequality, while the second inequality follows from

the fact that (a+ b+ c)2  3(a2+ b2+ c2). Now, by construction of ⌘⇤ and condition (iii) of Stone’s

Theorem, it follows that I < 3⌧ and III < 3c⌧ . To bound II, notice that ⌘⇤, being continuous on

a compact support, is also uniformly continuous. Hence, given ⌧ > 0, there is a � > 0 such that

||x0
� x|| < � implies that |⌘⇤(x0)� ⌘⇤(x)| < ⌧ , for all x0,x 2 Rd. Hence,

II  3E

"
nX

i=1

Wn,i(X)I||Xi�X||>�

#
+ 3E

"
nX

i=1

Wn,i(X)⌧

#
= 3E

"
nX

i=1

Wn,i(X)I||Xi�X||>�

#
+ 3⌧ ,

(A.157)

where we used the fact that |⌘⇤(x0) � ⌘⇤(x)|  1. Using condition (i) of Stone’s Theorem and the

Bounded Convergence Theorem A.11, it follows that lim supn!1 II  3⌧ . Putting all together,

lim sup
n!1

E[(⌘̃n(X)� ⌘(X))2]  3⌧ + 3c⌧ + 3⌧ = 3(c+ 2)⌧ . (A.158)

Since ⌧ is arbitrary, it follows that E[(⌘̃n(X)� ⌘(X))2] ! 0 and the proof is complete.

A6 Proof of the Vapnik-Chervonenkis Theorem

In this section, we present a proof of Thm 8.2. Our proof combines elements of the proofs given

by Pollard [1984] and Devroye et al. [1996], who credit Dudley [1978]. See also Castro [2020]. We

prove a general version of the result and then specialize it to the classification case.

Consider a probability space (Rp,Bp, ⌫), and n i.i.d. random variables Z1, . . . , Zn ⇠ ⌫. (For a review

of probability theory, see Section A1.) Note that each Zi is in fact a random vector, but we do not

employ the usual boldface type here, so as not to encumber the notation. An empirical measure is
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a random measure on (Rp,BP ) that is a function of Z1, . . . , Zn. The standard empirical measure ⌫n

puts mass 1/n over each Zi, so that

⌫n(A) =
1

n

nX

i=1

IZi2A , (A.159)

for A 2 B
p. By the Law of Large Numbers (LLN), ⌫n(A)

a.s.
�! ⌫(A), as n ! 1, for any fixed A. In the

VC theorem, one is interested instead in a uniform version of the LLN: supA2A |⌫n(A)� ⌫(A)|
a.s.
�! 0,

for a suitably provided family of sets A ⇢ B
p. General conditions to ensure the measurability of

supA2A |⌫n(A)� ⌫(A)| and of various other quantities in the proofs are discussed in Pollard [1984];

such will be assumed tacitly below.

Define a second (signed) empirical measure ⌫̃n, which puts mass 1/n or �1/n randomly over each

Zi, i.e.,

⌫̃n(A) =
1

n

nX

i=1

�iIZi2A (A.160)

for A 2 A, where �1, . . . ,�n are i.i.d. random variables with P (�1 = 1) = P (�1 = �1) = 1/2,

independently of Z1, . . . , Zn.

It turns out that the VC theorem, much as Theorem 8.1, can be proved by a direct application of

the Union Bound (A.10) and Hoe↵ding’s Inequality (8.8), with the addition of the next key lemma.

Lemma A.2. (Symmetrization Lemma). Regardless of the measure ⌫,

P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
 4P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
, for all ⌧ > 0 and n � 2⌧�2 . (A.161)

Proof. Consider a second sample Z 0
1
, . . . , Z 0

n ⇠ ⌫, independent of Z1, . . . , Zn and the signs �1, . . . ,�n.

In the first part of the proof, one seeks to relate the tail probability of supA2A |⌫n(A) � ⌫(A)|

in (A.161) to a tail probability of supA2A |⌫ 0n(A)� ⌫n(A)|, where

⌫ 0n(A) =
1

n

nX

i=1

IZ0
i2A , (A.162)

for A 2 A, and, in the second part, relate that to the tail probability of supA2A |⌫̃n(A)| in (A.161).

Notice that, whenever supA2A |⌫n(A) � ⌫(A)| > ⌧ , there is an A⇤
2 A, which is a function of

Z1, . . . , Zn, such that |⌫n(A⇤)� ⌫(A⇤)| > ⌧ , with probability 1. In other words,

P

✓
|⌫n(A

⇤)� ⌫(A⇤)| > ⌧

���� sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
= 1 , (A.163)

which in turn implies that

P (|⌫n(A
⇤)� ⌫(A⇤)| > ⌧) � P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
. (A.164)



A6. PROOF OF THE VAPNIK-CHERVONENKIS THEOREM 325

Now, conditioned on Z1, . . . , Zn, A⇤ is fixed (nonrandom). Notice that E[⌫ 0n(A
⇤) | Z1, . . . , Zn] =

⌫(A⇤) and Var(⌫ 0n(A
⇤) | Z1, . . . , Zn) = ⌫(A⇤)(1 � ⌫(A⇤

⇤))/n. Hence, we can apply Chebyshev’s

Inequality (A.75) to get:

P

✓
|⌫ 0n(A

⇤)� ⌫(A⇤)| <
⌧

2

���� Z1, . . . , Zn

◆
� 1�

4⌫(A⇤)(1� ⌫(A⇤))

n⌧2
� 1�

1

n⌧2
�

1

2
, (A.165)

for n � 2⌧�2. Now,

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

���� Z1, . . . , Zn

◆
� P

✓
|⌫ 0n(A

⇤)� ⌫n(A
⇤)| >

⌧

2

���� Z1, . . . , Zn

◆

� I|⌫n(A⇤)�⌫(A⇤)|>⌧ P

✓
|⌫ 0n(A

⇤)� ⌫(A⇤)| <
⌧

2

���� Z1, . . . , Zn

◆
�

1

2
I|⌫n(A⇤)�⌫(A⇤)|>⌧ .

(A.166)

where the second inequality follows from the fact that |a � c| > ⌧ and |b � c| < ⌧ /2 imply that

|a� b| > ⌧ /2. Integrating (A.166) on both sides with respect to Z1, . . . , Zn and using (A.164) yields

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

◆
�

1

2
P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
, (A.167)

which completes the first part of the proof. Next, define

⌫̃ 0n(A) =
1

n

nX

i=1

�iIZ0
i2A (A.168)

for A 2 A. The key observation at this point is that supA2A |⌫ 0n(A)�⌫n(A)| has the same distribution

as supA2A |⌫̃ 0n(A)� ⌫̃n(A)|, which can be seen by conditioning on �1, . . . ,�n. Hence,

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

◆
= P

✓
sup
A2A

|⌫̃ 0n(A)� ⌫̃n(A)| >
⌧

2

◆

 P

✓⇢
sup
A2A

|⌫̃ 0n(A)| >
⌧

4

�[⇢
sup
A2A

|⌫̃n(A)| >
⌧

4

�◆

 P

✓
sup
A2A

|⌫̃ 0n(A)| >
⌧

4

◆
+ P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
= 2P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
,

(A.169)

where the first inequality follows from the fact that |a� b| > ⌧ /2 implies that |a| > ⌧ /4 or |b| > ⌧ /4,

while the second inequality is an application of the Union Bound (A.10). Combining (A.167) and

(A.169) proves the lemma. ⇧

Equipped with the Symmetrization Lemma, the proof of the following theorem is fairly simple, but

also quite instructive.

Theorem A.20. (General Vapnik-Chervonenkis Theorem.) Regardless of the measure ⌫,

P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
 8S(A, n)e�n⌧

2
/32, for all ⌧ > 0 . (A.170)

where S(A, n) is the nth shatter coe�cient of A, defined in (8.14).
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Proof. For fixed Z1 = z1, . . . , Zn = zn, consider the binary vector (Izi2A, . . . , Izi2A), as A ranges

over A. There are of course a maximum of 2n distinct values that this vector can take on. But, for

a given A, this number may be smaller than 2n. Indeed, this is the number NA(z1, . . . , zn), defined

in (8.13) — by definition, this number must be smaller than the shatter coe�cient S(A, n), for

any choice of z1, . . . , zn. Notice that ⌫̃n(A), conditioned on Z1 = z1, . . . , Zn = zn, is still a random

variable, through the random signs �1, . . . ,�n. Since this random variable is a function of the vector

(Izi2A, . . . , Izi2A), the number of values it can take as A ranges over A is also bounded by S(A, n).

Therefore, supA2A |⌫̃n(A)| turns out to be a maximum of at most S(A, n) values, so that one can

employ the Union Bound (A.10) as follows:

P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

���� Z1, . . . , Zn

◆
= P

 
[

A2A

n
|⌫̃n(A)| >

⌧

4

o ���� Z1, . . . , Zn

!



X

A2A
P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
 S(A, n) sup

A2A
P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
,

(A.171)

with the understanding that the union, sum, and suprema are finite. Now we apply Hoe↵ding’s

Inequality (Theorem A.14) to bound the probability P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
. Conditioned on

Z1 = z1, . . . , Zn = zn, ⌫̃n(A) =
P

n

i=1
�iIA(zi 2 A) is a sum of independent zero-mean random

variables, which are bounded in the interval [�1, 1] (they are not identically-distributed, but this is

not necessary for application of Theorem A.14). Hoe↵ding’s Inequality then yields:

P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
 2e�n⌧

2
/32 , for all ⌧ > 0 . (A.172)

Applying (A.171) and integrating on both sides with respect to Z1, . . . , Zn yields

P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
 2S(A, n)e�n⌧

2
/32 , for all ⌧ > 0 . (A.173)

Now, if n < 2⌧�2, the inequality in (A.170) is trivial. If n � 2⌧�2, we can apply Lemma A.2 and

get the desired result. ⇧

If S(A, n) grows polynomially with n (this is the case if the VC dimension of A is finite), then, by

an application of Theorem A.8, (A.170) yields the uniform LLN: supA2A |⌫n(A)� ⌫(A)|
a.s.
�! 0.

Specializing Theorem A.20 to the classification case yields the required proof.

Proof of Theorem 8.2

Consider the probability space (Rd+1,Bd+1, PX,Y ), where PX,Y is the joint feature-label probability

measure constructed in Section 2.6.3. Let the i.i.d. training data be Sn = {(X1, Y1), . . . , (Xn, Yn)}.

Given a family of classifiers C, apply Theorem A.20 with ⌫ = PX,Y , Zi = (Xi, Yi) ⇠ PX,Y , for

i = 1, . . . , n, and ÃC containing all set of the kind

Ã = { (X) 6= Y } = { (X) = 1, Y = 0} [ { (X) = 0, Y = 1} , (A.174)
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for each  2 C (the sets Ã are Borel since classifiers are measurable functions). Then ⌫(Ã ) =

"[ ], ⌫n(Ã ) = "̂[ ], and sup
Ã 2ÃC

|⌫n(Ã ) � ⌫(Ã )| = sup 2C |"̂[ ] � "[ ]|. It remains to show

that S(ÃC , n) = S(AC , n), where AC = {A |  2 C}, and A is defined in (8.23). First note

that there is a one-to-one correspondence between ÃC and AC , since, for each  2 C, we have

Ã = A ⇥ {0}[Ac

 
⇥ {1}. Given a set of points {x1, . . . , xn}, if k points are picked by A , then k

points can be picked by Ã in the set {(x1, 1), . . . , (xn, 1)}; hence S(AC , n)  S(ÃC , n). On the other

hand, given a set of points {(x1, 0), . . . , (xn0 , 0), (xn0+1, 1), . . . , (xn0+n1 , 1)}, suppose that Ã picks

out the subset {(x1, 0), . . . , (xl, 0), (xn0+1, 1), . . . , (xn0+m, 1)} (the sets can be unambiguously written

this way, since order does not matter). Then A picks out the subset {(x1, . . . , xl, xn0+m+1, xn0+n1},

among the set of points {x1, . . . , xn0+n1}, and the two subsets determine each other uniquely, so

S(ÃC , n)  S(AC , n) Thus, S(ÃC , n) = S(AC , n). (Thus, the VC dimensions also agree: VÃC
= VAC .)

A7 Proof of Convergence of the EM Algorithm

Here we present a proof of convergence of the general Expectation-Maximization algorithm to a

local maximum of the log-likelihood function.

Let X, Z, ✓ 2 ⇥be the observed data, the hidden variables, and the vector of model, respectively.

meters. The EM method relies on a clever application of Jensen’s inequality to obtain the following

lower bound on the “incomplete” log-likelihood L(✓) = ln p✓(X):

B(✓) =
X

Z

q(Z) ln
p✓(Z,X)

q(Z)
 ln

X

Z

q(Z)
p✓(Z,X)

q(Z)
= ln

X

Z

p✓(Z,X) = L(✓) , (A.175)

for all ✓ 2 ✓, where q(Z) is an arbitrary probability distribution to be specified shortly. The

inequality follows directly from concavity of the logarithm function and Jensen’s inequality.

One would like to maximize the lower bound function B(✓) so that it touches L(✓), at a value

✓ = ✓(m). We show by inspection that the choice q(Z;✓(m)) = p✓(m)(Z | X) accomplishes this.

First we replace this choice of q(Z) in (A.175) to obtain:

B(✓,✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(Z,X)

p✓(m)(Z | X)
. (A.176)

Now we verify that indeed this lower bound touches the log-likelihood at ✓ = ✓(m):

B(✓(m),✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(m)(Z,X)

p✓(m)(Z | X)
=
X

Z

p✓(m)(Z | X) ln p✓(m)(X)

= ln p✓(m)(X)
X

Z

p✓(m)(Z | X) = L(✓(m)) .

(A.177)
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The main idea behind EM is that choosing a value of ✓ = ✓(m+1) that increases B(✓,✓(m)) over its

previous value B(✓(m),✓(m)) will also increase L(✓) over its previous value L(✓(m)). This can be

proved as follows:

B(✓(m+1),✓(m)) � B(✓(m),✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(m+1)(Z,X)

p✓(m)(Z,X)

=
X

Z

p✓(m)(Z | X) ln
p✓(m+1)(Z | X)

p✓(m)(Z | X)
+
X

Z

p✓(m)(Z | X) ln
p✓(n+1)(X)

p✓(m)(X)

= �D(p✓(m)(Z | X) || p✓(m+1)(Z | X)) + L(✓(m+1))� L(✓(m)) ,

(A.178)

where D(p || q) is the Kullback-Leibler distance between two probability mass functions. The KL

distance is always nonnegative [Kullback, 1968], with equality if and only if p = q with probability 1.

We conclude that

B(✓(m+1),✓(m))�B(✓(m),✓(m))  L(✓(m+1))� L(✓(m)) , (A.179)

and that setting

✓(m+1) = argmax
✓2✓

B(✓,✓(m)) , (A.180)

will increase the log-likelihood L(✓), unless one is already at a local maximum of L(✓).2 This fact

is graphically represented in Figure A.4. This proves the eventual convergence of the EM procedure

to a local maximum of L(✓). Now,

B(✓,✓(m)) =
X

Z

p✓(m)(Z | X) ln p✓(Z,X) �

X

Z

p✓(m)(Z | X) ln p✓(m)(Z | X) . (A.181)

Since the second term in the previous equation does not depend on ✓, the maximization in (A.180)

can be accomplished by maximizing the first term only:

Q(✓,✓(m)) =
X

Z

ln p✓(Z,X) p✓(m)(Z | X) = E✓(m) [ln p✓(Z,X) | X] . (A.182)

The unknown hidden variable Z is “averaged out” by the expectation.

The resulting EM procedure consists of picking an initial guess ✓ = ✓(0) and iterating two steps:

• E-Step: Compute Q(✓,✓(m))

• M-Step: Find ✓(m+1) = argmax✓ Q(✓,✓(m))

for n = 0, 1, . . . until the improvement in the log-likelihood | lnL(✓(m+1))� lnL(✓(m))| falls below a

pre-specified positive value.

2
In fact, just selecting ✓(m+1)

such that B(✓(m+1)
,✓(m)

)�B(✓(m)
,✓(m)

) > 0 will do — this is called “Generalized

Expectation Maximization”
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Figure A.4: The lower bound B(✓,✓(m)) touches the log-likelihood L(✓) at ✓ = ✓(m). Maximizing

B(✓,✓(m)) with respect to ✓ to obtain ✓(m+1) increases L(✓). Repeating the process leads to eventual

convergence to a local maximum of L(✓). (Adapted from Figure 1 of Minka [1998].)

.

A8 Data Sets Used in the Book

In this section we describe the synthetic and real data sets that are used throughout the book. The

real data sets can be downloaded from the book website.

A8.1 Synthetic Data

We employ a general multivariate Gaussian model to generate synthetic data, which consists of

blocked covariance matrices of the form

⌃d⇥d =

2

66664

⌃l1⇥l1 0 · · · 0

0 ⌃l2⇥l2 · · · 0
...

...
. . .

...

0 0 · · · ⌃lk⇥lk

3

77775
(A.183)

where l1 + · · · lk = d. The features are thus clustered into k independent groups. If k = d, then all

features are independent. The individual covariance matrices⌃ li⇥li could be arbitrary, but here we

will consider a simple parametric form

⌃li⇥li(�
2

i , ⇢i) = �2i

2

66664

1 ⇢i · · · ⇢i

⇢i 1 · · · ⇢i
...

...
. . .

...

⇢i ⇢i · · · 1

3

77775
(A.184)
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for i = 1, . . . , k, where �1 < ⇢i < 1. Hence, the features within each block have the same variance

�2
i
and are all correlated with the same correlation coe�cient ⇢i.

The class mean vectors µ0 and µ1 and prior probabilities c0 = P (Y = 0) and c1 = P (Y = 1) are

arbitrary. Heteroskedastic Gaussian models result from specifying the class-conditional covariance

matrices⌃ 0 and⌃ 1 separately. “Noisy features” can be obtained by matching mean components

across classes and matching corresponding singleton blocks in the covariance matrices. Each noisy

feature is an independent feature with the same mean and variance across the classes.

The python script app synth data.py generates sample data from this model.

A8.2 Dengue Fever Prognosis Data Set

This is gene-expression microarray data from a dengue fever diagnosis study performed in the

Northeast of Brazil. The primary purpose of the study was to be able to predict the ultimate

clinical outcome of dengue (whether the benign classical form or the dangerous hemorrhagic fever)

from gene expression profiles of peripheral blood mononuclear cells (PBMCs) of patients in the early

days of fever. The study is reported in Nascimento et al. [2009]. See also Example 1.1. The data

consist of 26 training points measured on 1981 genes and three class labels, corresponding to: 8

classical dengue fever (DF) patients, 10 dengue hemorrhagic fever (DHF) patients, and 8 febrile

non-dengue (ND) patients, as classified by an experienced clinician. This is a retrospective study,

meaning that the patients were tracked and their outcomes verified by a clinician, but their status

could not be determined clinically at the time the data was obtained, which was within one week

of the start of symptoms.

A8.3 Breast Cancer Prognosis Data Set

This is gene-expression microarray data from the breast cancer prognosis study conducted in the

Netherlands and reported in van de Vijver et al. [2002]. The data set consists of 295 training points

of dimensionality 70 and two class labels. The feature vectors are normalized gene-expression profiles

from cells harvested from 295 beast tumor samples in a retrospective study, meaning that patients

were tracked over the years and their outcomes recorded. Using this clinical information, the authors

labeled the tumor samples into two classes: the “good prognosis” group (label 1) were disease-free

for at least five years after first treatment, whereas the “bad prognosis” group developed distant

metastasis within the first five years. Of the 295 patients, 216 belong to the “good-prognosis” class,

whereas the remaining 79 belong to the “poor- prognosis” class.
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A8.4 Stacking Fault Energy Data Set

This data set contains the experimentally recorded values of the stacking fault energy (SFE) in

austenitic stainless steel specimens with di↵erent chemical compositions; see Yonezawa et al. [2013].

The SFE is a microscopic property related to the resistance of austenitic steels. High-SFE steels

are less likely to fracture under strain and may be desirable in certain applications. The data set

contains 17 features corresponding to the atomic element content of 473 steel specimens and the

continuous-valued measured SFE for each.

A8.5 Soft Magnetic Alloy Data Set

This is a data set on Fe-based nanocrystalline soft magnetic alloys, which is part of on-going

work [Wang et al., 2020]. This data set records the atomic composition and processing parame-

ters along with several di↵erent electromagnetic properties for a large number of magnetic alloys.

We will be particularly interested in the magnetic coercivity as the property to be predicted. Larger

values of coercivity mean that the magnetized material has a wider hysteresis curve and can with-

stand larger magnetic external fields without losing its own magnetization. By contrast, small values

of coercivity mean that a material can lose its magnetization quickly. Large-coercivity materials are

therefore ideal to make permanent magnets, for example.

A8.6 Ultrahigh Carbon Steel Data Set

This is the Carnegie Mellon University Ultrahigh Carbon Steel (CMU-UHCS) dataset [Hecht et al.,

2017; DeCost et al., 2017]. This data set consists of 961 high-resolution 645 ⇥ 484 images of steel

samples subjected to a variety of heat treatments. The images are micrographs obtained by scanning

electron microscopy (SEM) at several di↵erent magnifications. There are a total of seven di↵erent

labels, corresponding to di↵erent phases of steel resulting from di↵erent thermal processing (num-

ber of images in parenthesis): spheroidite (374), carbide network (212), pearlite (124), pearlite +

spheroidite (107), spheroidite+Widmanstätten (81), martensite (36), and pearlite+Widmanstätten

(27). The main goal is to be able to predict the label of a new steel sample given its micrograph.
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X = (X1, . . . , Xd) 2 Rd feature vector

Y 2 {0, 1} target

ci = P (Y = i), i = 0, 1 class prior probabilities
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p(x) feature vector density (if it exists)
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⌘(x) = P (Y = 1 | X = x) posterior-probability function

 : Rd
! {0, 1} classifier
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 ⇤, "⇤ Bayes classifier and Bayes error

"i = P ( (X) = 1� i | Y = i), i = 0, 1 population-specific true error rates

Dn : Rd
! R sample-based discriminant

µi, i = 0, 1 class means

�2
i
, i = 0, 1 class variances

⌃i, i = 0, 1 class covariance matrices

�(x) = (1/2⇡)
R
x

�1 e�u
2
du cdf of a N(0, 1) Gaussian random variable

Sn = {(X1, Y1), . . . , (Xn, Yn)} sample training data

n, n0, n1 = n� n0 total and population-specific sample sizes

 n : Sn 7!  n classification rule

 n : Rd
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✓, ✓̂ parameter vector and estimator

k(x,x0) kernel

�i, i = 1, . . . , d Lagrange multipliers

LP , LD primal and dual Lagrangians

C set of classification rules

VC , S(C, n) VC dimension and shatter coe�cients

pi, qi, Ui, Vi, i = 1, . . . , b population-specific bin probabilities and counts

⌅n : (  n, Sn, ⇠) 7! "̂n error estimation rule

"̂n error estimator for mixture sample

Bias("̂n), Vardev("̂n), RMS("̂n) bias, deviation variance, root mean square error

Sm = {(Xt

i
, Y t

i
); i = 1, . . . ,m} independent test sample

"̂n,m test-set error estimator

"̂ rn resubstitution error estimator

"̂ cv(k)n k-fold cross-validation error estimator

"̂ ln leave-one-out error estimator

L[f ] regression error of f

F �-algebra

B Borel �-algebra

µ,⌫ measures

� Lebesgue measure

Xn

a.s.
�! X almost-sure convergence (with probability 1) of Xn to X

Xn

L
p

�! X Lp convergence of Xn to X
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P
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Loève, M. (1977). Probability Theory I. Springer.

Lorentz, G. G. (1976). The 13th problem of hilbert. In Proceedings of Symposia in Pure Mathematics,

volume 28, pages 419–430. American Mathematical Society.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks:

A view from the width. In Advances in neural information processing systems, pages 6231–6239.

Lugosi, G. and Pawlak, M. (1994). On the posterior-probability estimate of the error rate of non-

parametric classification rules. IEEE Transactions on Information Theory, 40(2):475–481.

Mallows, C. L. (1973). Some comments on c p. Technometrics, 15(4):661–675.

Marguerat, S. and Bahler, J. (2010). Rna-seq: from technology to biology. Cellular and molecular

life science, 67(4):569–579.

Martins, D., Braga-Neto, U., Hashimoto, R., Bittner, M., and Dougherty, E. (2008). Intrinsically

multivariate predictive genes. IEEE Journal of Selected Topics in Signal Processing, 2(3):424–439.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:115–133.

McFarland, H. and Richards, D. (2001). Exact misclassification probabilities for plug-in normal

quadratic discriminant functions. i. the equal-means case. Journal of Multivariate Analysis, 77:21–

53.

McFarland, H. and Richards, D. (2002). Exact misclassification probabilities for plug-in normal

quadratic discriminant functions. ii. the heterogeneous case. Journal of Multivariate Analysis,

82:299–330.



344 BIBLIOGRAPHY

McLachlan, G. (1976). The bias of the apparent error in discriminant analysis. Biometrika,

63(2):239–244.

McLachlan, G. (1987). Error rate estimation in discriminant analysis: recent advances. In Gupta,

A., editor, Advances in Multivariate Analysis. D. Reidel, Dordrecht.

McLachlan, G. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York.

McLachlan, G. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley-Interscience,

New York.

Minka, T. (1998). Expectation maximization as lower bound maximization. Tech-

nical report, Microsoft Research. Tutorial published on the web at http://www-

white.media.mit.edu/tpminka/papers/em.html.

Moran, M. (1975). On the expectation of errors of allocation associated with a linear discriminant

function. Biometrika, 62(1):141–148.

Murphy, K. (2012a). Machine Learning: A Probabilistic Perspective. MIT Press.

Murphy, K. P. (2012b). Machine learning: a probabilistic perspective. MIT press.

Narendra, P. and Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection.

IEEE Trans. on Computers, 26(9):917–922.

Nascimento, E., Abath, F., Calzavara, C., Gomes, A., Acioli, B., Brito, C., Cordeiro, M., Silva,

A., Andrade, C. M. R., Gil, L., and Junior, U. B.-N. E. M. (2009). Gene expression profiling

during early acute febrile stage of dengue infection can predict the disease outcome. PLoS ONE,

4(11):e7892. doi:10.1371/journal.pone.0007892.

Nilsson, R., Peña, J. M., Björkegren, J., and Tegnér, J. (2007). Consistent feature selection for

pattern recognition in polynomial time. Journal of Machine Learning Research, 8(Mar):589–612.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Nualart, D. (2004). Kolmogorov and probability theory. Arbor, 178(704):607–619.

Okamoto, M. (1963). An asymptotic expansion for the distribution of the linear discriminant func-

tion. Ann. Math. Statist., 34:1286–1301. Correction: Ann. Math. Statist., 39:1358–1359, 1968.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Poor, V. and Looze, D. (1981). Minimax state estimation for linear stochastic systems with noise

uncertainty. IEEE Transactions on Automatic Control, AC-26(4):902–906.

http://www-white.media.mit.edu/tpminka/papers/em.html
http://www-white.media.mit.edu/tpminka/papers/em.html


BIBLIOGRAPHY 345

Rajan, K., editor (2013). Informatics for Materials Science and Engineering. Butterworth-

Heinemann, Waltham, MA.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning. MIT Press,

Cambridge, MA.

Raudys, S. (1972). On the amount of a priori information in designing the classification algorithm.

Technical Cybernetics, 4:168–174. in Russian.

Raudys, S. (1978). Comparison of the estimates of the probability of misclassification. In Proc. 4th

Int. Conf. Pattern Recognition, pages 280–282, Kyoto, Japan.

Raudys, S. and Jain, A. (1991). Small sample size e↵ects in statistical pattern recognition: Recom-

mendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(3):4–37.

Raudys, S. and Young, D. (2004). Results in statistical discriminant analysis: a review of the former

soviet union literature. Journal of Multivariate Analysis, 89:1–35.

Rissanen, J. (1989). Stochastic complexity in statistical inquiry. World Scientific.

Robert, C. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational

Implementation. Springer, 2nd edition.

Rogers, W. and Wagner, T. (1978). A finite sample distribution-free performance bound for local

discrimination rules. Annals of Statistics, 6:506–514.

Rosenblatt, F. (1957). The perceptron – a perceiving and recognizing automaton. Technical Report

85-460-1, Cornell Aeronautical Laboratory, Bu↵alo, NY.

Rosenthal, J. (2006). A First Look At Rigorous Probability Theory. World Scientific Publishing,

Singapore, 2nd edition.

Ross, S. (1994). A first course in probability. Macmillan, New York, 4th edition.

Ross, S. (1995). Stochastic Processes. Wiley, New York, 2nd edition.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Sayre, J. (1980). The distributions of the actual error rates in linear discriminant analysis. Journal

of the American Statistical Association, 75(369):201–205.



346 BIBLIOGRAPHY

Schafer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estima-

tion and implications for functional genomics. Statistical Applications in Genetics and Molecular

Biology, 4(1):32.

Schena, M., Shalon, D., Davis, R., and Brown, P. (1995). Quantitative monitoring of gene expression

patterns via a complementary DNA microarray. Science, 270:467–470.

Schiavo, R. and Hand, D. (2000). Ten more years of error rate research. International Statistical

Review, 68(3):295–310.

Schroeder, M. (2009). Fractals, chaos, power laws: Minutes from an infinite paradise. Dover.

Sima, C., Attoor, S., Braga-Neto, U., Lowey, J., Suh, E., and Dougherty, E. (2005a). Impact of

error estimation on feature-selection algorithms. Pattern Recognition, 38(12):2472–2482.

Sima, C., Braga-Neto, U., and Dougherty, E. (2005b). Bolstered error estimation provides superior

feature-set ranking for small samples. Bioinformatics, 21(7):1046–1054.

Sima, C. and Dougherty, E. (2006). Optimal convex error estimators for classification. Pattern

Recognition, 39(6):1763–1780.

Sima, C., Vu, T., Braga-Neto, U., and Dougherty, E. (2014). High-dimensional bolstered error

estimation. Bioinformatics, 27(21):3056–3064.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Sitgreaves, R. (1951). On the distribution of two random matrices used in classification procedures.

Ann. Math. Statist., 23:263–270.

Sitgreaves, R. (1961). Some results on the distribution of the W-classification. In Solomon, H.,

editor, Studies in Item Analysis and Prediction, pages 241–251. Stanford University Press.

Smith, C. (1947). Some examples of discrimination. Annals of Eugenics, 18:272–282.

Snapinn, S. and Knoke, J. (1985). An evaluation of smoothed classification error-rate estimators.

Technometrics, 27(2):199–206.

Snapinn, S. and Knoke, J. (1989). Estimation of error rates in discriminant analysis with selection

of variables. Biometrics, 45:289–299.

Stark, H. and Woods, J. W. (1986). Probability, random processes, and estimation theory for

engineers. Prentice-Hall, Inc.



BIBLIOGRAPHY 347

Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer Science &

Business Media.

Stigler, S. M. (1981). Gauss and the invention of least squares. The Annals of Statistics, 9:465–474.

Stone, C. (1977). Consistent nonparametric regression. Annals of Statistics, 5:595–645.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the

Royal Statistical Society. Series B (Methodological), 36:111–147.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT press Cambridge.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and

Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: methods

and application to hematopoietic di↵erentiation. Proceedings of the National Academy of Sciences,

96(6):2907–2912.

Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L., and Geman, D. (2005). Simple decision rules

for classifying human cancers from gene expression profiles. Bioinformatics, 21(20):3896–3904.

Tanaseichuk, O., Borneman, J., and Jiang, T. (2013). Phylogeny-based classification of microbial

communities. Bioinformatics, 30(4):449–456.

Teichroew, D. and Sitgreaves, R. (1961). Computation of an empirical sampling distribution for the

w-classification statistic. In Solomon, H., editor, Studies in Item Analysis and Prediction, pages

285–292. Stanford University Press.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of multiple cancer types

by shrunken centroids of gene expression. PNAS, 99:6567–6572.

Toussaint, G. (1971). Note on optimal selection of independent binary-valued features for pattern

recognition. IEEE Transactions on Information Theory, 17(5):618.

Toussaint, G. (1974). Bibliography on estimation of misclassification. IEEE Transactions on Infor-

mation Theory, IT-20(4):472–479.

Toussaint, G. and Donaldson, R. (1970). Algorithms for recognizing contour-traced hand-printed

characters. IEEE Transactions on Computers, 19:541–546.

Toussaint, G. and Sharpe, P. (1974). An e�cient method for estimating the probability of misclas-

sification applied to a problem in medical diagnosis. IEEE Transactions on Information Theory,

IT-20(4):472–479.



348 BIBLIOGRAPHY

Tutz, G. (1985). Smoothed additive estimators for non-error rates in multiple discriminant analysis.

Pattern Recognition, 18(2):151–159.

van de Vijver, M., He, Y., van’t Veer, L., Dai, H., Hart, A., Voskuil, D., Schreiber, G., Peterse,

J., Roberts, C., Marton, M., Parrish, M., Astma, D., Witteveen, A., Glas, A., Delahaye, L., van

der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E., Friend, S., and Bernards, R. (2002). A

gene-expression signature as a predictor of survival in breast cancer. The New England Journal

of Medicine, 347(25):1999–2009.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.

Vitushkin, A. (1954). On hilberts thirteenth problem. Dokl. Akad. Nauk SSSR, 95(4):701–704.

Vu, T., Braga-Neto, U., and Dougherty, E. (2008). Preliminary study on bolstered error estimation

in high-dimensional spaces. In Proceedings of GENSIPS’2008 - IEEE International Workshop on

Genomic Signal Processing and Statistics. Phoenix, AZ.

Vu, T., Sima, C., Braga-Neto, U., and Dougherty, E. (2014). Unbiased bootstrap error estimation

for linear discrimination analysis. EURASIP Journal on Bioinformatics and Systems Biology,

2014:15.

Wald, A. (1944). On a statistical problem arising in the classification of an individual into one of

two groups. Ann. Math. Statist., 15:145–162.

Wang, Y., Tian, Y., Kirk, T., Laris, O., Ross Jr, J. H., Noebe, R. D., Keylin, V., and Arróyave,
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Conditional Variance Formula, 305
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Continuous Mapping Theorem, 309

convolution, 130

covariance matrix, 306

Cover-Hart Theorem, 35, 98, 319
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k-fold, 152
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RSS, 280

stratified, 160
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decision hyperplane, 71

decision tree, 136
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pruning, 139
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DNA microarrays, 8

Dominated Convergence Theorem, 309
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resubstitution, 10

root mean-square error, 154
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test-set, 10, 157
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zero bootstrap, 164

Expectation-Maximization algorithm, 237

generalized, 328

expected error, 54

expected MSE, 257
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exponential family, 44

F-error, 34, 101, 206

factor analysis, 223

factor loading matrix, 222

false negative, 18

false positive, 18

feature, 16

feature extraction, 206
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feature selection, 10, 207
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exhaustive search, 208

filter, 8, 13, 88, 208

generalized sequential search, 212

greedy, 209

mutual information, 208
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sequential backward search, 212

sequential floating backward search (SFBS),

213

sequential floating forward search (SFFS), 213

sequential forward search, 211

top-down, 211

wrapper, 208

feature space, 10, 16

feature vector, 2

feature-label distribution, 15

feature-target distribution, 2

feed-forward mode, 127

Fisher’s discriminant, 83, 206, 226

Gauss-Markov Theorem, 263

for correlated noise, 283

Gaussian process, 268

covariance function, 268

absolute exponential, 268

Gaussian, 268
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marginal likelihood, 273

mean function, 268

regression, 267

testing points, 271

generalized linear classifier, 45

generative model, 222

grid search, 198

hard margin, 113

heteroskedastic model, 31, 254

Hoe↵ding’s Inequality, 313

homoskedastic model, 29, 254

Hughes Phenomenon, 5, 188

hyperplane decision boundary, 113

hyperquadrics, 31

impurity, 137

function, 137

incomplete log-likelihood , 237

interpretability, 10, 136

Iris data set, 13

isotropic covariance function, 268

Jensen’s Inequality, 301

Karhunen-Loève Transform, 217

Keras, 149
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Cauchy, 95

cubic, 95

Epanechnikov, 95

Gaussian, 95

Hermite, 96

radial basis function, 95, 117

sinc, 96

spherical, 95

Triangle, 95

Kohonen network, 248

Kolmogorov-Arnold Theorem, 133

Kullback-Leibler distance, 328

label, 4

latent-variable model, 223

Law of Large Numbers, 312

Law of Total Expectation, 304

Law of Total Probability, 292

Learning with an unreliable teacher, 65

least absolute shrinkage and selection operator

(LASSO), 279

least concave majorant, 105

least-squares estimator, 260, 261

least-squares regression function, 261

Linear Discriminant Analysis, 70

Linear Discriminant Analysis (LDA), 10

loading matrix, 216, 218

logistic

classification rule, 75

curve, 76

loss, 37

0-1, 38

absolute di↵erence, 4

expected, 4, 37

function, 4, 255

misclassification, 4, 38

quadratic, 4, 5

lossless transformation, 207
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distance, 29, 206

transformation, 306
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margin, 110
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mean-square
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error, 5, 305

MMSE, 256, 305

Mercer’s Theorem, 116

minimax classifier, 33

minimax threshold, 71

minimum-variance unbiased estimator, 263

missing values, 11

mixture sampling, 61

model selection, 185

Multidimensional Scaling (MDS), 220

classical scaling, 222

non-metric, 225

multiple testing, 279

Naive-Bayes principle, 170, 178

Nearest-Mean Classifier, 29, 71

nearest-neighbor distance, 35

nearest-shrunken centroids, 63

Neocognitron, 142

neural network, 120

artificial bias units, 133

backpropagation

algorithm, 126, 142

batch, 126

equation, 128

mode, 128

online, 126

convolutional, 129, 142, 207

AlexNet, 142

filter, 129

striding, 131

VGG16, 131, 142

zero-padding, 129

deep, 135

depth-bound, 134

dropout, 132

empirical classification error score, 126

epoch, 127
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convolutional, 129
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hidden, 123

max-pooling, 131

mean absolute error score, 126

mean-square error score, 126
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neuron, 120
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nonlinearities, 120
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rectifier linear unit (ReLU), 123

regression, 275

sigmoid, 122, 143

arctan, 122
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logistic, 122

threshold, 122, 196

softmax function, 131
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no-free-lunch theorem, 3, 59, 63, 197
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Optimal Bayesian Classifier (OBC), 84
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posterior distribution, 82

posterior probability, 17

posterior-probability function, 17, 305
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prediction error, 4

prediction rule, 2
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Principal Component Analysis (PCA), 5, 216

prior distribution, 81
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Quadratic Discriminant Analysis (QDA), 73
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R2 statistic, 277
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random restart method, 233

random sequence, 308

convergence in Lp, 308

convergence in distribution, 308

convergence in probability, 308

convergence with probability 1, 308

uniformly bounded, 310

rank-based classification rules, 141
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receiver operating characteristic curve (ROC), 32

regression, 5, 253

bias-variance trade-o↵, 258

CART, 276

conditional error, 254

empirical risk minimization (ERM), 281

error estimator
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test-set, 277

Gaussian process, 267
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maximum-a-posteriori (MAP), 256
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model selection, 279

neural network, 275

nonparametric, 266

optimal, 255, 305
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Structural Risk Minimization (SRM), 280

SVM, 276
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regression error, 255

regression error estimation, 277

Regularized Discriminant Analysis (RDA), 78

reinforcement learning, 5

resampling, 61

residual sum of squares (RSS), 260
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sample-based conditional error, 54
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(SMACOF), 221

scissors plot, 6, 188

scree plot, 229

selection bias, 208, 215

Self-organizing map (SOM), 246

semi-supervised learning, 5

sensitivity, 18

separate sampling, 62

shatter coe�cient, 191

shrinkage, 71, 265

slack variables, 113

soft margin, 113

sparse feature vectors, 279

sparsification, 279

specificity, 18

stationary covariance function, 268

stationary process, 268

Stone’s Theorem, 102, 321

stress, 220

structural risk minimization, 160, 200

su�cient statistic, 28, 227

supervised learning, 1

support vector, 110, 112

Support Vector Machine (SVM), 110

surrogate classifiers, 161

t-test, 8, 210

target, 2

testing data, 10

total sum of squares, 277

Toussaint’s Counter-Example, 210

training data, 3, 51

training error, 152

training-validation-testing strategy, 199

transfer learning, 132

tree depth, 136

unconditional error, 54

underfitting, 113

uninformative prior, 82

Union Bound, 290

unsupervised learning, 1, 5, 231

validation set, 198

Vapnik-Chervonenkis

Theorem, 196, 323

theorem, 325

theory, 6, 189

variance function, 268

VC class, 195

VC confidence, 201

VC dimension, 156, 191

vector quantization, 248

weak learner, 60

weight decay, 132
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wide-sense stationary process, 284

XOR

data set, 117, 119, 124, 136, 194, 211

problem, 211

zero-mean additive noise, 254
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