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Preface
Connectivity plays an important role in image processing and analysis, and particularly

in problems related to image segmentation, image filtering, image coding, motion analysis,

multiscale signal decomposition, pattern recognition, and other application areas. In this

dissertation, we study a general theory of connectivity in image processing and analysis.

Connectivity is classically defined using either a topological or a graph-theoretic frame-

work, and their fuzzy analogs. We provide a thorough review of several existing definitions

of connectivity. Although these classical concepts have been extensively applied in image

processing and analysis, they are unfortunately incompatible. The theory of connectivity

classes, first proposed in the late eighties for binary images, and recently extended to arbi-

trary complete lattices, circumvents the shortcomings of classical definitions by providing

a consistent unified theoretical framework that includes the majority of the existing con-

cepts of connectivity. We review this theory, expand it with new results and examples, and

demonstrate its usefulness in applications based on connected operators.

We also propose the notion of multiscale connectivity. We provide a novel theoretical

framework for multiscale connectivity, which includes the theory of connectivity classes in

complete lattices as a special, single-scale case. Among the items we propose and study in

connection with multiscale connectivities is the integration of connectivity with multiscale

methods that are currently routinely employed in image processing and analysis applica-

tions. In particular, we define several multiscale tools based on multiscale connectivities,

such as multiscale signal decompositions, hierarchical segmentation, hierarchical cluster-

ing and multiscale features. Several examples of application of these multiscale tools are

provided using synthetic and real images.
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Chapter 1

Introduction

Connectivity plays an important role in image processing and analysis, and particularly

in problems related to image segmentation, image filtering, image coding, motion analysis,

multiscale signal decomposition, pattern recognition, and other application areas. In this

dissertation, we study a general theory of connectivity in image processing and analysis.

We review the existing theory of connectivity, expand it with new results and examples, and

demonstrate its usefulness in applications. We also propose a novel theoretical framework

for multiscale connectivity, which includes most of the previous notions of connectivity as

special cases. Among the contributions the theory of multiscale connectivity makes is the

possibility of integrating connectivity with multiscale methods that are currently routinely

employed in image processing and analysis applications. In the next few sections, we outline

the content of this dissertation.

1.1 Background

In mathematics, and in image processing and analysis in particular, connectivity is

classically defined using either a topological or a graph-theoretic framework [22, 60]. More

recently, these classical notions have been extended to a fuzzy setting [18, 67, 95, 96], which

allows the definition of connectivity for grayscale images, as well.

Although these classical concepts have been extensively applied in image processing

and analysis, they are incompatible [66]. In general, topological connectivity is useful for

images defined over a continuous space, whereas graph-theoretic connectivity is useful for

images defined over a discrete space. Compatibility is desired, since discrete images are
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often obtained from discretization of continuous scenes, by means of sampling. In addition

to incompatibilities between the classical approaches to connectivity, there are conceptual

limitations as well. A topological or a graph-theoretic framework to connectivity limits the

type of objects to which connectivity can be applied.

This state of affairs motivated G. Matheron and J. Serra to propose an axiomatic ap-

proach to connectivity, known as the theory of connectivity classes, which circumvents the

shortcomings of the classical definitions [77]. This approach is based on the observation that

standard notions of connectivity share the properties that the empty set and the points in

the space are connected, and that unions of intersecting connected objects are connected.

This may be considered to be a minimal set of desirable requirements for connectivity. In

particular, they imply that an object is partitioned by its connected components.

Matheron and Serra’s original theory was set-oriented, and therefore could be applied

only to binary images. It turns out that there exists a very successful theoretical frame-

work for studying operations on binary, grayscale, and multispectral images, as well as on

more general objects. This framework is based on mathematical entities known as complete

lattices [8]. For example, the family of all binary (resp. grayscale, multispectral) images,

provided with a meaningful partial order relation, is an example of a complete lattice. Re-

cently, Serra showed how to extend the theory of connectivity classes to complete lattices,

in a way that is consistent with the binary theory [78–80]. This framework includes and

unifies traditional concepts of connectivity and allows the study of many interesting connec-

tivity examples that are not covered by the classical definitions. We remark that the field

that studies operators on complete lattices is commonly known as mathematical morphology

[34, 56, 76]. The term derives from the fact that the prototypical morphological operators

for binary (resp. grayscale, multispectral) images have a clear geometrical meaning. Since

it is based on complete lattices, the theory of connectivity classes can be called a theory of

“morphological connectivity.”

On the other hand, multiscale methods have proven to be very important in image pro-

cessing and analysis. These methods include linear pyramid decomposition techniques [15],

scale-space methods [38, 91], hierarchical clustering algorithms [36, 84], hierarchical segmen-

tation methods [16, 47], wavelet representations [20, 53], multiscale classification features

[55], and other areas of application. All these methods share a common unifying property:

they propose to analyze an image at several different scales. The issue of scale arises in image

processing and analysis for several reasons. For instance, a complete description of an image
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can be obtained by combining global information at small scales with detail information at

large scales (we remark that the term scale is used here in the sense of resolution, which is

the inverse of the sense in which it is used, for example, in map making or in scale-space

theory). In addition, there is some psychovisual evidence that the human visual system

operates in a multiscale fashion [32, 53]. Furthermore, in the real world, measurements and

operations make sense only at the appropriate scale.

1.2 Contributions

The contributions made in this dissertation can be grouped into two broad categories.

First, we enrich the existing theory of connectivity classes in complete lattices, by providing

several new theoretical results and introducing new examples of connectivity. Moreover,

we provide some examples of practical image processing and analysis applications using a

class of operators based on connectivity criteria. Second, we propose a novel theoretical

framework for connectivity in a multiscale setting, which includes the previous theory as

a special, single-scale case, and we demonstrate its application in a few multiscale image

processing and analysis tasks.

1.2.1 Connectivity on Complete Lattices

As mentioned before, connectivity is classically defined using a topological or graph-

theoretic framework, and their fuzzy analogs. In this dissertation, we provide an extensive

review of several existing definitions of connectivity. In particular, we show that some of

the examples of fuzzy connectivity that we examine lead to connectivity classes.

An important and useful aspect of the theory of connectivity classes is that a connectiv-

ity can be equivalently specified by either a family of connected objects (the connectivity

class) or by a family of operators known as connectivity openings, which perform connected

component extraction. This fact has been recognized from the beginning, in the binary case

[77], and later extended to the complete lattice case in [78]. In this dissertation, we provide

new results on semi-continuity properties of connectivity openings.

Another important operator is the reconstruction operator. This operator has been

known in mathematical morphology [44, 45] before the introduction of the theory of con-

nectivity classes. In [35], H. Heijmans showed that, in the binary case, a connectivity can be

equivalently specified in terms of a reconstruction operator. In this dissertation, we extend
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Heijmans’ binary result to infinite ∨-distributive complete lattices; this cover the cases of

binary, grayscale and multispectral images (a similar result was independently established

in [64]).

Developing meaningful examples of connectivity classes for grayscale and multispectral

images has turned out to be a non-trivial problem. In [78–80], J. Serra introduced examples

of grayscale connectivity classes in suitably defined complete lattices. In this dissertation, we

present a method to construct complete lattices, called ψ-invariant lattices, which contain

the invariant elements with respect to an appropriately chosen operator ψ. These complete

lattices allow us to develop new interesting examples of connectivity classes; these include

the classical notion of graph-theoretic k-connectivity, which is not compatible with the

original set-oriented definition of connectivity classes, and a novel example of connectivity

for grayscale images, called flat grayscale connectivity. We study flat grayscale connectivity

in a general topological framework, which can be easily specialized to the discrete case. We

demonstrate, by means of examples, that flat grayscale connectivity produces meaningful

and potentially useful segmentation results.

A second-generation connectivity class is a new connectivity class generated from an

existing one by means of a suitably defined operator [77–80]. There are basically two cate-

gories of second-generation connectivities. The first one is based on clustering elements of

the original connectivity by means of a clustering operator. We give an axiomatic formu-

lation of clustering operators, and present a new example of a clustering connectivity class

based on morphological sampling operators. The second category is the dual, in a sense, of

the first. It is based on restricting a given connectivity class by means of a contraction oper-

ator. This includes the known case of a connectivity class restricted by openings, previously

studied for the binary case in [65, 66], which we generalize to atomic complete lattices.

An alternative approach to the theory of connectivity classes is the concept of hyper-

connectivity, proposed by J. Serra in [78, 79]. The hyperconnectivity approach modifies one

of the axioms required by the theory of connectivity classes, thereby allowing new exam-

ples of connectivity, including interesting grayscale examples. The main drawback of this

approach is that it loses much of the structure and strength of the theory of connectivity

classes. In this dissertation, we study in detail this alternative approach to connectivity.

We give new examples, including a few classical definitions of connectivity that fit naturally

in the hyperconnectivity framework. In addition, we define a new class of operators that

are useful for segmentation, called Z-operators, and propose a novel segmentation technique

for grayscale and multispectral images, which we call the segmentation by similarity zones.
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Finally, we study a class of operators, known as connected operators [19, 35, 74], which

are defined in terms of a given connectivity class. Connected operators do not work at

the pixel level, but rather at the level of the flat zones of an image. A connected operator

can remove boundaries, but cannot shift boundaries or introduce new ones. It therefore

preserves contour/shape information, known to carry most of image content perceived by

human observers. In this dissertation, we study connected operators in some detail. The

main contribution here is a number of applications, taken from our previous work, which

demonstrate the effectiveness of connected operators in various image processing and anal-

ysis tasks, including landmine detection in multispectral images [9], target detection and

tracking in FLIR video sequences [10], and topology correction of 3-D brain MRI data (this

last work has not been published in its original form; however, it led to the development of

a related method that was reported in [30, 31]).

1.2.2 Multiscale Connectivity

In this dissertation, we present a novel axiomatic framework for the notion of multiscale

connectivity. As in the case of connectivity classes, the theory of multiscale connectivity is

based on complete lattices. The proposed framework includes the previous theory of connec-

tivity classes as a special case; a connectivity class can be seen as a single-scale connectivity.

Hence, the proposed theory can be said to be a theory of “multiscale morphological con-

nectivity.”

The idea of multiscale connectivity arises naturally from the observation that the con-

nectivity of an object depends upon the scale at which it is observed. This means that

an object may be assigned a varying degree of connectivity, and that several levels of

connectivity of varying strictness can be defined. The first observation leads to the no-

tion of a connectivity measure, whereas the second leads to the notion of a connectivity

pyramid. In this dissertation, we provide an axiomatic formulation of these concepts and

prove that they are equivalent. We show that the multiscale analog of classical topologi-

cal (resp. graph-theoretic) connectivity is given by fuzzy topological (resp. graph-theoretic)

τ -connectivity, which corresponds to connectivity at scale τ . We define and investigate the

notions of σ-connectivity openings and σ-reconstruction operators associated with a multi-

scale connectivity, which correspond to connectivity openings and reconstruction operators

at scale σ, respectively. We distinguish between two cases of interest. The first case, to
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be referred to as continuous multiscale connectivity, assumes that the scale parameter is

continuous. The second case, to be referred to as discrete multiscale connectivity, assumes

that the set of scales available for multiscale analysis is discrete, as is usually the case in

digital image processing and analysis. We show that, in a precise sense, discrete multiscale

connectivity is a special case of continuous multiscale connectivity.

In Mathematical Morphology, there are several examples of operators that have a nat-

ural multiscale interpretation. We define and study examples of multiscale connectivities

generated by such operators. We consider two general categories of multiscale operators,

namely, clustering pyramids, which lead to “negative” multiscale connectivities, and con-

traction pyramids, which lead to “positive” multiscale connectivities.

We also investigate the problem of creating new multiscale connectivities from existing

ones by means of a suitably defined operator. Following J. Serra’s nomenclature for the

single-scale connectivity case [78], we refer to these new multiscale connectivities as second-

generation multiscale connectivities.

In addition, we show how the proposed framework leads to the development of useful

multiscale image processing and analysis tools, such as pyramid decomposition, hierarchical

segmentation, hierarchical clustering, and multiscale features. These are described next.

• Pyramid Decomposition. Discrete multiscale connectivities lead to an interesting

example of a nonlinear multiscale signal decomposition scheme, which uses

σ-reconstruction operators as the analysis operators of a nonlinear pyramid decom-

position scheme. In contrast to pyramid decompositions based on pixel-based opera-

tors [27], the pyramid decomposition that we propose here does not work at the pixel

level, but at the level of the connected components of an object at various scales. This

leads to a novel object-based multiscale signal decomposition scheme. This scheme can

be considered to be the pyramid transform analog of the so-called second-generation

image coding techniques [40], which constitute an object-based approach to image

compression that codes homogeneous regions (objects) in an image.

• Hierarchical Segmentation and Hierarchical Clustering. The concept of hier-

archical segmentation is of fundamental importance in multiscale applications, such

as adaptive bit-rate object-based coding of still images and image sequences [72]. In

these applications, it is desirable to have several levels of segmentation at various

scales, so that the amount of compression (bit-rate) can be adjusted to meet varying
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transmission/storage requirements. On the other hand, hierarchical clustering is a

technique used to group together similar objects in a hierarchical fashion, with appli-

cations in unsupervised classification algorithms, where the number, or the statistical

distribution, of classes is not known a priori [23, 36]. The availability of several levels

of clustering in hierarchical clustering algorithms is often helpful in revealing the true

structure of the data; e.g., the number of classes that best represent the organization

of the data. Both these notions can be formalized in the context of hierarchical parti-

tions. In this dissertation, we propose two examples of hierarchical partitions, based

on multiscale connectivities, which can be used for hierarchical segmentation and hi-

erarchical clustering algorithms: the hierarchical partition of connected components,

which can be defined in arbitrary complete lattices, and the hierarchical partition of

flat zones, which applies to binary, grayscale, and multispectral images.

• Multiscale Features. Image features are fundamental constituents of pattern recog-

nition algorithms for image analysis. The performance of such algorithms is directly

related to the choice of robust features. In this dissertation, we propose two multi-

scale image analysis features, namely, the clustering curve and the clustering spectrum,

which measure the multiscale connectivity properties of a given object. We remark

that, in mathematical morphology, a very useful and well-known example of multi-

scale image analysis feature is the pattern spectrum [55]. The clustering spectrum is

distinct from the pattern spectrum, since the latter is based on measurements made

on a granulometric distribution, whereas the former is based on measurements made

on a hierarchical partition. Nevertheless, clustering spectra and pattern spectra are

similar tools and share similar properties.

Several examples, using synthetic and real images, are employed to illustrate the use of

the multiscale tools described above.

We also investigate the notion of multiscale hyperconnectivity. We show that the clas-

sical notion of graph-theoretic degree of connectivity is an example of a hyperconnectivity

measure. We also construct a meaningful example of grayscale multiscale hyperconnec-

tivity, which we call multiscale flat hyperconnectivity; this is the multiscale extension of

the original example of hyperconnectivity proposed in [78]. We present an example of a

multiscale signal decomposition scheme based on multiscale flat hyperconnectivity.
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Finally, we show that connected operators can be extended to the framework of multi-

scale connectivity. We define and study σ-connected operators, which are operators that

are connected at scale σ. We show that this leads to a degree of connectivity for connected

operators, which measures how “insensitive” the operator is to clustering of flat zones of an

image at low connectivity scales. We also define and study σ-grain operators. In particular,

we show that families of σ-grain openings and σ-grain closings constitute granulometries

and anti-granulometries, respectively, parameterized by the connectivity scale.

An early version of the theory of multiscale connectivity appeared in [13]. However, there

are some differences between the approach developed in that paper and the one adopted

here. The main differences are that, in this dissertation, the degree of connectivity is allowed

to be negative, and the set of scales is fixed, being either the set of real numbers, in the

case of continuous scale, or the set of integers, in the case of discrete scale.

1.3 Organization

This dissertation is organized as follows.

In Chapter 2, we introduce our notation and briefly review basic mathematical concepts

that will be needed in the sequel. We review key notions of complete lattices, morpho-

logical operators, topological spaces, the hit-or-miss topology, and fuzzy sets and fuzzy

topological spaces.

In Chapter 3, we provide a thorough review of several classical notions of connectivity

on topological spaces and graphs, both in the ordinary and fuzzy sense. We examine the

classical notions of connectivity and path-connectivity in topological spaces, and connec-

tivity and k-connectivity in graphs. Several definitions of connectivity on fuzzy topological

spaces have appeared in the literature. We examine two of them, namely the notion of fuzzy

topological τ -connectivity and level connectivity, which are both natural extensions of the

notion of ordinary topological connectivity. We then define the notion of fuzzy graphs and

investigate the notions of fuzzy graph-theoretic τ -connectivity and topographic connectivity.

In Chapter 4, we present the theory of connectivity classes, including our new results

and examples concerning connectivity openings, the reconstruction operator, connectivity

on ψ-invariant lattices, second-generation connectivity and hyperconnectivity. The material

in Chapters 2, 3 and 4 correspond, with a few minor modifications, to what was reported

in [12]. Some of this material also appeared in [14].
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In Chapter 5, we investigate the notion of connected operators, and demonstrate their

effectiveness in various image processing and analysis tasks, by using applications taken

from our previous work.

In Chapter 6, we present our theory of multiscale connectivity. We examine continuous

and discrete multiscale connectivity, multiscale connectivity examples generated by multi-

scale morphological operators, and second-generation multiscale connectivity. Moreover, we

demonstrate the application of multiscale connectivity in important multiscale image pro-

cessing and analysis tasks. We also study multiscale hyperconnectivity and the notion of

multiscale connected operators. The material in this chapter corresponds what was reported

in [11].

Finally, Chapter 7 contains concluding remarks and directions for future research.

We remark here that the examples presented in this dissertation were coded in MatLab

5.3 [57], with the MMach Mathematical Morphology toolbox [58]. Many of the images used

in the examples accompany the MMach toolbox and are used under permission from SDC

Information Systems.





Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to introduce our notation and to briefly review basic

mathematical concepts that will be needed later. Namely, we review key notions of complete

lattices, morphological operators, topological spaces, the hit-or-miss topology, and fuzzy sets

and fuzzy topological spaces. For a more detailed exposition on those subjects, the reader

is referred to [8, 18, 24, 34, 56, 59, 60, 76, 96].

2.1 Complete Lattices

A partially ordered set (L,≤), also known as a poset, is a nonempty set L together with a

binary order relation ≤ on L that is reflexive, anti-symmetric and transitive [8, 34]. A poset

(L,≤) is said to be a complete lattice if every family K ⊆ L has an infimum and a supremum

in L [8, 34], denoted by
∧K and

∨K, respectively. A poset in which there is an infimum

(resp. supremum) operation is said to be a complete inf (resp. sup) semi-lattice. A complete

lattice (L,≤) for which the order relation is a total order (i.e., for which A,B ∈ L implies

that A ≤ B or B ≤ A) is called a complete chain. Following [79], whenever we use the

terms “lattice” and “chain” we mean “complete lattice” and “complete chain,” respectively.

In addition, we often refer to “lattice L,” when there is no confusion as to the underlying

partial order.

The prototypical example of lattice is the collection L = P(E) of all subsets of a

set E, with set inclusion as the partial order; the infimum and supremum are given by

set intersection and set union, respectively. The prototypical examples of chains are given

by the “completed” set of reals IR = IR ∪ {−∞,∞} and the “completed” set of integers
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ZZ = ZZ ∪ {−∞,∞}, with the usual numerical ordering as the partial order; the infimum

and supremum are given by the usual numerical infimum and supremum.

By definition, every lattice L must possess a least element O and a greatest element I,

given by O =
∧L and I =

∨L, respectively. For example, if L = P(E), then O = ∅ and

I = E. In a lattice, every element is both an upper bound and a lower bound of the empty

set; therefore,
∨ ∅ = O and

∧ ∅ = I.

The following result appears in [34, Prop. 2.12].

2.1.1 Proposition. Given a poset L, the following three statements are equivalent:

(a) The poset L is a complete lattice.

(b) The poset L is a complete inf semi-lattice with a greatest element I.

(c) The poset L is a complete sup semi-lattice with a smallest element O. �

A subset S of a lattice L is called a sup-generating family for L if every element of L
can be written as the supremum of elements in S. For example, the set of points in E is

a sup-generating family for the lattice P(E). An element of the sup-generating family S
is called a sup-generator. It is assumed here that O is not a sup-generator; i.e., O /∈ S.

However, every family S sup-generates O by means of O =
∨ ∅.

Subsets of L will be denoted by script letters, such as C,F ,G,H. The elements of L are

generally denoted by uppercase letters, such as A,B,C; however, in the case of function

lattices (see Examples 2.1.2(d)–(f) below), we prefer to use the classical symbols f, g, h.

In order to distinguish the elements of the sup-generating family S, we denote them by

lowercase letters, such as x, y, z, except in the case of function lattices, where we use the

well established “delta” notation.

Given a lattice L, each element A ∈ L determines two families in L : the majo-

rants of A, given by M∗(A) = {B ∈ L | B ≥ A}, and the minorants of A, given by

M∗(A) = {B ∈ L | B ≤ A}. Given a sup-generating family S ⊆ L and A ∈ L, we also de-

fine the family S(A) = {x ∈ S | x ≤ A}, as the family of all sup-generators majorated by A.

Note that S(A) = S ∩ M∗(A). Moreover, it is clear that

A =
∨

{x | x ∈ S(A)} =
∨

{x ∈ S | x ≤ A}; (2.1)

that is, A is the supremum of the elements of S that it majorates.
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Two lattices L and L′ are said to be isomorphic if there exists a bijection ψ: L → L′

that preserves ordering; i.e., for A,B ∈ L,

A ≤ B ⇔ ψ(A) ≤ ψ(B). (2.2)

The bijection ψ is said to be an isomorphism between lattices L and L′. Isomorphic lattices

are essentially the same, since they enjoy the same lattice-theoretic properties.

An atom is a nonzero element A ∈ L (i.e., A �= O) such that B ≤ A implies B = A

or B = O. A lattice L is said to be atomic if there is a sup-generating family of atoms S
in L. For example, the lattice P(E) is atomic, since the points in E are atoms. A semi-

atom is a nonzero element A ∈ L such that A ≤ A1 ∨ A2 implies A ≤ A1 or A ≤ A2.

By induction, this property applies to the supremum of a finite number of elements; i.e.,

A ≤ A1 ∨ A2 ∨ · · · ∨ An implies A ≤ Ai, for some 1 ≤ i ≤ n. A semi-atom A is said

to be strong if the semi-atomicity property works for arbitrary suprema; i.e., A ≤ ∨Aα
implies A ≤ Aα′ , for a particular index α′. A lattice L is said to be (strongly) semi-

atomic if there is a sup-generating family of (strong) semi-atoms S in L. For example, the

lattice P(E) is strongly semi-atomic, since the points in E are strong semi-atoms. It is

easy to see that all atoms and strong semi-atoms of a lattice L must be contained in any

sup-generating family S of L. In particular, if L is sup-generated by a family that does not

contain atoms (resp. strong semi-atoms), L cannot be atomic (resp. strongly semi-atomic).

In this dissertation, whenever an atomic, semi-atomic or strongly semi-atomic lattice L
is considered, we implicitly assume a sup-generating family S that contains only atoms,

semi-atoms or strong semi-atoms, respectively.

A lattice L is said to be infinite ∨-distributive if

A ∧
∨
Bα =

∨
(A ∧Bα), (2.3)

whereas L is said to be infinite ∧-distributive if

A ∨
∧
Bα =

∧
(A ∨Bα), (2.4)

for every A ∈ L and {Bα} in L. A lattice L is said to be infinite distributive if it is

both infinite ∨-distributive and infinite ∧-distributive. For example, the lattice P(E) is

infinite distributive.

In the following, we give a few examples of lattices and associated sup-generating fami-

lies, and describe some of their properties.
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2.1.2 Example.

(a) (Set lattice). As mentioned before, the collection P(E) of all subsets of a set E is

a lattice. The partial order is set inclusion, whereas the supremum and infimum

are set union and set intersection, respectively. Lattice P(E) is sup-generated by

S = {{v} | v ∈ E}. It is atomic, strongly semi-atomic, and infinite distributive.

(b) (Lattice of closed sets). Let E be a topological space (for a brief overview of topo-

logical concepts, see Section 2.3). The collection F(E) of all closed subsets of E is a

lattice. The partial order is set inclusion, the infimum is set intersection, whereas the

supremum is the topological closure of set union. Now, assume that E is a Hausdorff

space. Then, F(E) is sup-generated by S = {{v} | v ∈ E} (one can show that S ⊆ L,

due to the Hausdorff condition). It is atomic and semi-atomic, but not strongly semi-

atomic in general. Moreover, it is infinite ∧-distributive, but not infinite ∨-distributive

in general.

(c) (Lattice of open sets). Let E be a topological space. The collection G(E) of all open

subsets of E is a lattice. The partial order is set inclusion, the supremum is set union,

whereas the infimum is the topological interior of set intersection. Now, assume that E

is a metric space. Then, G(E) is sup-generated by S = {B(v, r) | v ∈ E, r > 0}, the

nonempty open balls B(v, r) of radius r, centered at v. Lattice G(E) is neither atomic

nor strongly semi-atomic in general. Moreover, it is infinite ∨-distributive, but not

infinite ∧-distributive in general.

(d) (Function lattice). The collection Fun(E, T ) of all functions from a set E into a

lattice T is a lattice. The partial order is the product ordering

f ≤ g if f(v) ≤T g(v), for all v ∈ E, (2.5)

where “≤T ” is the partial order relation on T . The supremum and infimum are the

“pointwise” infimum and supremum, given respectively by

(
∨
fα)(v) =

∨
fα(v) (2.6)

(
∧
fα)(v) =

∧
fα(v), (2.7)

for all v ∈ E, where the supremum and infimum on the right-hand side are of

course in T . Let ST be a sup-generating family for lattice T . Lattice Fun(E, T )
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is sup-generated by S = {δv,t | v ∈ E, t ∈ ST }, where

δv,t(w) =

 t, if w = v

0, otherwise
, w ∈ E, (2.8)

is known as a pulse function in Fun(E, T ). Here, “0” denotes the least element

of T . Lattice Fun(E, T ) inherits many of its properties from lattice T . In particular,

Fun(E, T ) is atomic, (strongly) semi-atomic, infinite ∨- or ∧- distributive, for any

given E, if and only if T enjoys the same properties.

(e) (Lattice of upper semi-continuous functions). Let E be a topological space. A function

f from E into a lattice T is said to be upper semi-continuous (u.s.c.) if, given v ∈ E
and t ∈ T such that t �≤ f(v), then one can find a neighborhood U of v such that

t �≤ f(w), for every w ∈ U . The collection Funu(E, T ) of all u.s.c. functions from E

into T is a lattice. The partial order is the product ordering in (2.5), the infimum is

just the pointwise infimum, whereas the supremum is the smallest (in the pointwise

sense) u.s.c. function greater than the pointwise supremum. Now, assume that E is

a Hausdorff space. Then Funu(E, T ) is sup-generated by S = {δv,t | v ∈ E, t ∈ ST },

the pulses in Fun(E, T ) (one can show that S ⊆ L, due to the Hausdorff condition).

It is atomic, semi-atomic and infinite ∧-distributive, for any given E, if and only if T
enjoys the same properties. However, it is neither strongly semi-atomic nor infinite

∨-distributive in general.

(f) (Lattice of lower semi-continuous functions). Let E be a topological space. A function

f from E into a lattice T is said to be lower semi-continuous (l.s.c.) if, given v ∈ E and

t ∈ T such that t �≥ f(v), then one can find a neighborhood U of v such that t �≥ f(w),

for every w ∈ U . The collection Funl(E, T ) of all l.s.c. functions from E into T is a

lattice. The partial order is the product ordering in (2.5), the supremum is just the

pointwise supremum, while the infimum is the largest (in the pointwise sense) l.s.c.

function smaller than the pointwise infimum. Now, assume that E is a metric space.

Then Funl(E, T ) is sup-generated by S = {hB(v,r),t | v ∈ E, r > 0, t ∈ T � {0}},

where

hB(v,r),t(w) =

 t, if w ∈ B(v, r)

0, otherwise
, w ∈ E, (2.9)

is a cylinder with base the nonempty open ball B(v, r) and height equal to t. Lattice
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Funl(E, T ) is neither atomic nor strongly semi-atomic in general. It is infinite ∨-

distributive, for any given E, if and only if T is, but it is not infinite ∧-distributive

in general. ♦

The previous lattices are of special interest in image analysis. The lattices in Exam-

ples 2.1.2(a)–(c) are used as mathematical models for binary images, whereas the lattices

in Examples 2.1.2(d)–(f) are used as mathematical models for grayscale images, if T is a

chain, and multispectral images (e.g., color images), if T is a finite product of chains (for a

suitable choice of E, this includes n-dimensional images as well as image sequences).

Since any chain T is semi-atomic and infinite distributive [34], the lattice Fun(E, T ) of

grayscale images always enjoys these properties. Similarly, if T is a chain, Funu(E, T ) is

semi-atomic and infinite ∧-distributive, whereas Funl(E, T ) is infinite ∨-distributive. For

continuous-valued images, one usually sets T = IR, in which case ST = IR, whereas for

discrete-valued images, one usually sets T = ZZ or T = {0, 1, . . . , R − 1}, where R ≥ 2 is a

finite integer, in which case ST = ZZ or ST = {1, 2, . . . , R − 1}, respectively. Both lattices

Fun(E,ZZ) and Fun(E, {0, 1, . . . , R− 1}) are strongly semi-atomic; they are not atomic, for

R ≥ 3. However, Fun(E, IR) is semi-atomic, but not strongly semi-atomic.

The lattice of grayscale images Fun(E, T ) is atomic, for any given E, if and only if

T is an atomic chain, which is true if and only if T is bi-valued (e.g., when T = {0, 1}).

However, it is easy to see that Fun(E, {0, 1}) is isomorphic to the set lattice P(E). Similarly,

it can be shown (as a direct consequence of Proposition 2.1.3 below) that Funu(E, {0, 1}) is

isomorphic to F(E) and Funl(E, {0, 1}) is isomorphic to G(E). The lattices Funu(E, T ) and

Funl(E, T ) extend lattices F(E) and G(E), respectively, in the same way that Fun(E, T )

extends P(E). As a matter of fact, we have the following characterization of Funu(E, T )

and Funl(E, T ) (for a proof, see [34, pp. 347–348]).

2.1.3 Proposition. Let f ∈ Fun(E, T ).

(a) f ∈ Funu(E, T ) if and only if the sets Xt(f) = {v ∈ E | f(v) ≥ t} are closed in E,

for all t ∈ T .

(b) f ∈ Funl(E, T ) if and only if the sets Yt(f) = {v ∈ E | f(v) �≤ t} are open in E,

for all t ∈ T . �

We conclude this section by introducing the notions of underlattice and sublattice.

A nonempty subset M of a lattice L is clearly a poset (M,≤), under the partial order
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≤ of L. We say that M is an underlattice of L if (M,≤) is a complete lattice. The supre-

mum and infimum in M need not be equal to the supremum and infimum in L. If they are

equal, M is said to be a sublattice of L. For instance, if E′ ⊆ E, then P(E′) is a sublattice

of P(E). On the other hand, lattices F(E) and G(E) are underlattices of P(E), whereas

lattices Funu(E, T ) and Funl(E, T ) are underlattices of Fun(E, T ).

2.2 Basic Morphological Operators

Given two lattices L and M, a (lattice) operator is a mapping ψ: L → M. An operator

ψ is said to be increasing if A ≤ B ⇒ ψ(A) ≤ ψ(B). A dilation is an operator δ such that

δ(
∨
Aα) =

∨
δ(Aα). Similarly, an erosion is an operator ε such that ε(

∧
Aα) =

∧
ε(Aα).

From these definitions, it can be easily verified that dilations and erosions are increasing

operators. An adjunction (ε, δ) is a pair of operators ε: L → M and δ: M → L such that

δ(B) ≤ A ⇔ B ≤ ε(A), (2.10)

for all A ∈ L, B ∈ M. It can be shown that, if (ε, δ) is an adjunction, then ε is an erosion

and δ is a dilation [34, Thm. 3.13]. Moreover, to any erosion ε corresponds a unique dilation

δ such that (ε, δ) is an adjunction, and vice-versa.

From now on, let us consider the case in which M = L. In this case, ψ is said to

be an operator on L. The range ψ(L) ⊆ L of an operator ψ on L is the family ψ(L) =

{ψ(A) | A ∈ L}. The identity operator id is the operator on L given by id(A) = A, for

A ∈ L. The composition ψ1ψ2 of two operators ψ1 and ψ2 is given by ψ1ψ2(A) = ψ1(ψ2(A)).

We write ψ1 ≤ ψ2 if ψ1(A) ≤ ψ2(A), for all A ∈ L. The supremum
∨
ψα of operators ψα

is given by (
∨
ψα)(A) =

∨
ψα(A). Similarly, the infimum

∧
ψα of operators ψα is given by

(
∧
ψα)(A) =

∧
ψα(A). An operator ν on a lattice L is called a negation if ν is a bijection

that reverses ordering (i.e., A ≤ B ⇔ ν(A) ≥ ν(B)), such that ν2 = id. When no confusion

is possible, we write A∗ instead of ν(A). An important example of negation is given by the

complementation operator C on L = P(E), given by C(A) = Ac = E � A, for A ∈ P(E)

(note that, in this case, we write Ac instead of A∗). Given a negation on L and an operator

ψ on L, the dual operator ψ∗ on L is given by ψ∗(A) = (ψ(A∗))∗, for A ∈ L. Note that

ψ∗∗ = ψ; hence, the operators ψ and ψ∗ are dual to each other.
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An operator ψ is said to be idempotent if ψψ(A) = ψ(A), for A ∈ L. The invariance

domain of ψ is defined as

Inv(ψ) = {A ∈ L | ψ(A) = A}. (2.11)

Clearly, for any operator ψ, we have that Inv(ψ) ⊆ ψ(L). Moreover, ψ is idempotent if and

only if Inv(ψ) = ψ(L).

An increasing and idempotent operator is said to be a (morphological) filter. The op-

erator ψ is said to be anti-extensive if ψ(A) ≤ A, whereas it is said to be extensive if

ψ(A) ≥ A, for A ∈ L. An anti-extensive filter is said to be an opening, whereas an exten-

sive filter is said to be a closing. It is easy to show that the supremum of openings is an

opening, whereas the infimum of closings is a closing. In addition, it can be shown that, if

(ε, δ) is an adjunction on L, then θ = δε is an opening on L, whereas φ = εδ is a closing

on L [34, Thm. 3.25]. These openings and closings are referred to as adjunctional openings

and adjunctional closings, respectively.

The following result will be quite useful.

2.2.1 Proposition. Let L be a lattice.

(a) If γ is an opening on L and ψ is an increasing and anti-extensive operator on L, then

γ ≤ ψ ⇔ Inv(γ) ⊆ Inv(ψ). (2.12)

In particular, if ψ is an opening, then γ = ψ ⇔ Inv(γ) = Inv(ψ).

(b) If φ is a closing on L and ψ is an increasing and extensive operator on L, then

ψ ≤ φ ⇔ Inv(φ) ⊆ Inv(ψ). (2.13)

In particular, if ψ is a closing, then φ = ψ ⇔ Inv(φ) = Inv(ψ). �

Proof. (a): Assume that γ ≤ ψ. For A ∈ Inv(γ), we have A = γ(A) ≤ ψ(A), and ψ(A) ≤
A, since ψ is anti-extensive, so that ψ(A) = A ⇒ A ∈ Inv(ψ). Hence, Inv(γ) ⊆ Inv(ψ).

Now, assume that Inv(γ) ⊆ Inv(ψ). For A ∈ L, we have γ(A) ≤ A⇒ ψγ(A) ≤ ψ(A), since

γ is anti-extensive and ψ is increasing. But γ(A) ∈ Inv(γ), since γ is idempotent, which

implies that γ(A) ∈ Inv(ψ) ⇒ γ(A) = ψγ(A) ≤ ψ(A). Hence, γ ≤ ψ. In the particular

case in which ψ is an opening, then the roles of γ and ψ can be reversed in (2.12), so that

γ = ψ ⇔ Inv(γ) = Inv(ψ).
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(b): This statement is the dual to the statement in part (a), and its proof is completely

analogous. Q.E.D.

As a consequence of the above result, openings and closings are uniquely characterized

by their domain of invariance. The reader is referred to [65, 77], for a more detailed char-

acterization of the relationship between openings/closings and their domains of invariance.

The following result is a consequence of the so-called strong version of Tarski’s fixpoint

theorem [34, Prop. 12.27].

2.2.2 Proposition. Let L be a lattice, with infimum
∧

and supremum
∨

.

(a) If φ is a closing on L, then Inv(φ) is an underlattice of L, with infimum
∧
Aα and

supremum φ(
∨
Aα).

(b) If θ is an opening on L, then Inv(θ) is an underlattice of L, with supremum
∨
Aα and

infimum θ(
∧
Aα). �

A filter ψ is said to be an inf-filter if ψ(id ∧ ψ) = ψ, whereas it is said to be a sup-filter

if ψ(id ∨ ψ) = ψ. A filter that is both an inf-filter and a sup-filter is said to be a strong

filter. It can be easily seen that ψ is a strong filter if and only if ψ satisfies the following

“robustness” property:

A ∧ ψ(A) ≤ B ≤ A ∨ ψ(A) ⇒ ψ(A) = ψ(B), (2.14)

for all A,B ∈ L. It can be shown [34, Prop. 12.3] that openings and closings are strong fil-

ters. Moreover, we have the following result (this is a direct consequence of [34, Prop. 12.5]).

2.2.3 Proposition. If θ is an opening and φ is a closing, then θφ is a sup-filter and φθ is

an inf-filter. �

Given a family M ⊆ L, we denote by 〈M | ∨ 〉 the family sup-generated by M, i.e.,

the family consisting of all elements of L that are obtained by taking suprema of elements

of M. The family M is said to be sup-closed if M = 〈M | ∨ 〉 (in particular, M must be

non-empty, since O =
∨ ∅ ∈ M). It is easy to see that 〈M | ∨ 〉 is the smallest sup-closed

family that contains M. We have the following result.

2.2.4 Proposition. If ψ is increasing and anti-extensive, then Inv(ψ) is sup-closed. �
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Proof. From the anti-extensivity of ψ, we have that ψ(O) = O ⇒ O ∈ Inv(ψ) and,

therefore, Inv(ψ) is non-empty. Thus, consider a family {Aα} in Inv(ψ). From the anti-

extensivity of ψ, we have that ψ(
∨
Aα) ≤ ∨Aα. On the other hand, since ψ is increasing, we

have that ψ(
∨
Aα) ≥ ψ(Aα) = Aα, for all α, so that ψ(

∨
Aα) ≥ ∨Aα. Hence, ψ(

∨
Aα) =∨

Aα ⇒ ∨Aα ∈ Inv(ψ) and, therefore, Inv(ψ) is sup-closed. Q.E.D.

To each operator ψ on a lattice L, there corresponds an operator ψ◦ on L, called the

characteristic opening associated with ψ, given by

ψ◦(A) =
∨

{B ∈ Inv(ψ) | B ≤ A}, A ∈ L. (2.15)

We have the following characterization of ψ◦.

2.2.5 Proposition. Let ψ be an operator on a lattice L. The operator ψ◦, defined in (2.15),

is an opening on L, with Inv(ψ◦) = 〈 Inv(ψ) | ∨ 〉. �

Proof. From (2.15), it is clear that ψ◦ is increasing and anti-extensive. This implies that

ψ◦ψ◦ ≤ ψ◦. On the other hand, (2.15) implies that B ∈ Inv(ψ), B ≤ A ⇒ B ≤ ψ◦(A).

Hence, ψ◦(A) =
∨{B ∈ Inv(ψ) | B ≤ A} ≤ ∨{B ∈ Inv(ψ) | B ≤ ψ◦(A)} = ψ◦ψ◦(A).

Therefore, ψ◦ψ◦ = ψ◦ (i.e., ψ◦ is idempotent), so that ψ◦ is an opening.

If A ∈ Inv(ψ◦) (i.e., if A = ψ◦(A) =
∨{B ∈ Inv(ψ) | B ≤ A}), then A ∈ 〈 Inv(ψ) | ∨ 〉, so

that Inv(ψ◦) ⊆ 〈 Inv(ψ) | ∨ 〉. On the other hand, it is clear that Inv(ψ) ⊆ Inv(ψ◦). In addi-

tion, according to Proposition 2.2.4, Inv(ψ◦) is sup-closed, so that 〈 Inv(ψ) | ∨ 〉 ⊆ Inv(ψ◦).

This implies that Inv(ψ◦) = 〈 Inv(ψ) | ∨ 〉, as required. Q.E.D.

The following result examines the relationship between an operator and its characteristic

opening.

2.2.6 Proposition. For any operator ψ on L, we have that:

(a) ψ◦≤ ψ, if ψ is increasing and anti-extensive.

(b) ψ ≤ ψ◦, if ψ is anti-extensive and idempotent.

(c) ψ = ψ◦ if and only if ψ is an opening. �

Proof. (a): By combining Propositions 2.2.4 and 2.2.5, we get Inv(ψ◦) = Inv(ψ). Hence,

given an A ∈ L, we have that ψ◦(A) ∈ Inv(ψ◦) = Inv(ψ) ⇒ ψ◦(A) = ψψ◦(A) ≤ ψ(A), since

ψ is increasing.
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(b): Given an A ∈ L, we have that ψ(A) ∈ Inv(ψ) and ψ(A) ≤ A, from the idempotence

and anti-extensivity of ψ. Hence, from (2.15), we have that ψ(A) ≤ ψ◦(A).

(c): This is a direct consequence of parts (a) and (b). Q.E.D.

The following result is a direct corollary of Propositions 2.2.1–2.2.5.

2.2.7 Corollary. If ψ is an increasing and anti-extensive operator, then Inv(ψ◦) = Inv(ψ)

and ψ◦ is the greatest opening that is smaller than ψ. �

Proof. Propositions 2.2.4 and 2.2.5 imply that Inv(ψ◦) = Inv(ψ). From Proposition 2.2.1,

it follows that ψ◦ ≤ ψ. Moreover, if γ is any opening such that γ ≤ ψ then, again from

Proposition 2.2.1, we have that Inv(γ) ⊆ Inv(ψ) = Inv(ψ◦) ⇒ γ ≤ ψ◦, so that ψ◦ is the

greatest opening smaller than ψ. Q.E.D.

Next, we define the notion of a granulometry, which is of great importance in mathe-

matical morphology [55, 76].

2.2.8 Definition. Let L be a lattice, and let J be a poset. A family {θα | α ∈ J} of

openings on L is said to be a granulometry on L if it is decreasing:

θα ≤ θβ, for α ≥ β. (2.16)

The granulometry {θα | α ∈ J} is said to be parameterized by J . "

By using the fact that the members of a granulometry are openings, one can arrive easily

at the following alternative characterization.

2.2.9 Proposition. Let L be a lattice and J be a poset. A family {θα | α ∈ J} of openings

on L is a granulometry on L if and only if it satisfies the semigroup property:

θαθβ = θβθα = θα, for α ≥ β. (2.17)

�

Condition (2.17) is classically described in mathematical morphology by saying that, in

a granulometry, the stronger opening (i.e., the one with the larger parameter) “commands”

the weaker one (i.e., the one with the smaller parameter) [76]. In other words, applying two

(comparable) openings of the granulometry in either order amounts to applying only the

stronger one.
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An increasing operator ψ on L is said to be lattice upper semi-continuous (l.u.s.c) if, for

every totally ordered subset K of L, we have that

ψ(
∧

K) =
∧
A∈K

ψ(A). (2.18)

If (2.18) holds when K contains at most a countable number of elements, then ψ is said to

be ↓-continuous. Clearly, lattice upper semi-continuity implies ↓-continuity, but not vice-

versa. Note that both definitions imply that ψ(I) = I (this corresponds to the case in which

K = ∅).

Even though ↓-continuity is a weaker concept than lattice upper semi-continuity, it is

quite useful. In particular, we have the following result.

2.2.10 Proposition. Let ψ be an ↓-continuous operator on a lattice L, and let {A(s)} s∈IR

be a decreasing family of elements in L. Then,

ψ(
∧
s<tA(s)) =

∧
s<t ψ(A(s)), for all t ∈ IR. (2.19)

�

Proof. If t = −∞, the result follows from the fact that ψ(I) = I. So, let t > −∞. We

can pick an increasing sequence (si)i∈ZZ+ of numbers in IR such that si → t. We claim that∧
s<tA(s) =

∧
A(si). The inequality

∧
s<tA(s) ≤ ∧A(si) is obvious. To show the reverse

inequality, pick an s < t. Since si → t, we can find some index i0 such that s ≤ si < t,

for every i ≥ i0, which implies that A(si) ≤ A(s), for every i ≥ i0. This in turn implies

that
∧
A(si) ≤ A(s). Since this holds for any s < t, we have that

∧
A(si) ≤ ∧s<tA(s)

and, therefore,
∧
A(si) =

∧
s<tA(s). By using a similar argument and the fact that ψ is

an increasing operator, we can show that
∧
s<t ψ(A(s)) =

∧
ψ(A(si)). Now, {A(si)} is a

countable and totally ordered family of sets, and since ψ is an ↓-continuous operator, we have

that ψ(
∧
s<tA(s)) = ψ(

∧
A(si)) =

∧
ψ(A(si)) =

∧
s<t ψ(A(s)), which shows (2.19). Q.E.D.

The dual concepts of lattice lower semi-continuous (l.l.s.c.) and ↑-continuous operators

are defined analogously, and similar remarks apply in this case by replacing
∧

with
∨

. If

ψ is both l.u.s.c. and l.l.s.c., then ψ is said to be lattice continuous, whereas if ψ is both

↓-continuous and ↑-continuous, it is said to be %-continuous.
Let us now consider the case in which L = P(E), with E = IRn or ZZn. The translation

Ah of a set A ∈ P(E) is another set in P(E), given by Ah = {v + h | v ∈ A}. The
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translation-invariant erosion of A ∈ P(E) by a structuring element B ∈ P(E) is defined as

εB(A) = A&B = {h ∈ E | Bh ⊆ A}. (2.20)

Similarly, the translation-invariant dilation of A by B is defined as

δB(A) = A⊕B =
⋃

{Bh | h ∈ A}. (2.21)

It can be shown that (εB, δB) is an adjunction on P(E) [34, Prop. 4.13]. Furthermore,

all translation-invariant erosions and dilations on P(E) are of this form. It can also be seen

that εB and δB are dual to each other: εB = δ∗B, or εB(A) = (δB(Ac))c, for A ∈ P(E).

At times it is convenient, both from a theoretical and a practical point of view, to define

the counterparts of the dilation δB and erosion εB on P(E), when E is a proper subset of

IRn or ZZn. Given A,B ∈ P(E), we define

εEB(A) = εB(A) ∩ E = (A&B) ∩ E = A&E B, (2.22)

δEB(A) = δB(A) ∩ E = (A⊕B) ∩ E = A⊕E B. (2.23)

It is easy to see that εEB is an erosion on P(E) and, by infinite ∨-distributivity of P(E), δEB
is a dilation on P(E). However, the pair (εEB, δ

E
B) is not in general an adjunction on P(E).

The adjunctional openings and closings on P(E) that correspond to εB and δB are

given by

θB(A) = A◦B = (A&B) ⊕B =
⋃
h∈E

{Bh | Bh ⊆ A}, (2.24)

φB(A) = A•B = (A⊕B) &B =

[⋃
h∈E

{Bh | Bh ⊆ Ac}
]c
. (2.25)

The operators θB and φB, which are clearly dual to each other, are referred to as structural

openings and structural closings, respectively. If A ∈ Inv(θB), we say that A is B-open.

Similarly, if A ∈ Inv(φB), we say that A is B-closed. We remark that the operator θB(A) =

A◦B =
⋃
h∈E{Bh | Bh ⊆ A} defines an opening on P(E), even when E is a proper subset

of IRn or ZZn.

The operators discussed so far are binary. A useful way to build a grayscale operator

is to start from a binary operator and use a technique known as flat extension. In the

following, we review some facts related to flat extensions.
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Let {A(t)} t∈T be a decreasing family of sets in P(E). We say that function f ∈
Fun(E, T ) is generated by {A(t)} t∈T if

f(x) =
∨

{t ∈ T | x ∈ A(t)}, x ∈ E. (2.26)

In addition, we define the threshold operator Xt: Fun(E, T ) → P(E), for t ∈ T , as

Xt(f) = {v ∈ E | f(v) ≥ t}. (2.27)

We say that Xt(f) is the threshold set of f at level t. It is easy to see that f is generated

by the family {Xt(f)} t∈T of threshold sets.

The following facts will be useful in the sequel. We summarize them here for easy

reference.

2.2.11 Proposition. Let f ∈ Fun(E, T ) be generated by a decreasing family {A(t)} t∈T
of sets in P(E).

(a) If T = IR, then

Xt(f) =
⋂
s<t

A(s), for all t ∈ IR. (2.28)

In particular, Xt(f) =
⋂
s<tXs(f), for all t ∈ IR.

(b) If T = ZZ, then

Xt(f) =


E, for t = −∞
A(t), for t ∈ ZZ⋂
s<∞A(s), for t = ∞

. (2.29)

(c) If T = {0, 1, . . . , R− 1}, then

Xt(f) =

 E, for t = 0

A(t), otherwise
. (2.30)

�

2.2.12 Proposition. Let f, g ∈ Fun(E, T ), and let {fα} be a family of functions in

Fun(E, T ).

(a) f ≤ g if and only if Xt(f) ⊆ Xt(g), for all t ∈ T .
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(b)
∧
fα (resp.

∨
fα) is the function in Fun(E, T ) generated by the sets {⋂Xt(fα)} t∈T

(resp. {⋃Xt(fα)} t∈T ). Moreover,

Xt(
∧
fα) =

⋂
Xt(fα), for all t ∈ T , (2.31)

and

Xt(f1 ∨ f2) = Xt(f1) ∪Xt(f2), for all t ∈ T . (2.32)

If T = ZZ or T = {0, 1, . . . , R − 1}, then (2.32) holds for arbitrary suprema, except

possibly at t = ∞. �

It is also convenient to define the alternative threshold operator Yt: Fun(E, T ) → P(E),

for t ∈ T , as

Yt(f) = {v ∈ E | f(v) �≤ t}. (2.33)

Although in this section we focus on the threshold operator Xt, all the results presented

have a dual formulation for the operator Yt. For example, it is easy to see that

Yt(
∨
fα) =

⋃
Yt(fα), for all t ∈ T , (2.34)

and

Yt(f1 ∧ f2) = Yt(f1) ∩ Yt(f2), for all t ∈ T , (2.35)

whereas if T = ZZ or T = {0, 1, . . . , R − 1}, then (2.35) holds for arbitrary infima, except

possibly at t = −∞.

Consider now a family {ψt | t ∈ T } of increasing operators on P(E), which is decreasing

with respect to t (i.e., s ≤ t⇒ ψt ≤ ψs). We define an operator ψ̃ on Fun(E, T ) by assigning

to ψ̃(f) the function generated by the family of sets {ψt(Xt(f))} t∈T . In other words,

ψ̃(f)(v) =
∨

{t ∈ T | v ∈ ψt(Xt(f))}, v ∈ E. (2.36)

The operator ψ̃ is referred to as the semi-flat operator generated by the family {ψt | t ∈ T }.

It can be easily seen that ψ̃ is an increasing operator.

In the particular case when ψt = ψ, for every t ∈ T (i.e., the family consists of a single

operator ψ), (2.36) reduces to

ψ(f)(v) =
∨

{t ∈ T | v ∈ ψ(Xt(f))}, v ∈ E. (2.37)

This is known as the flat operator generated by ψ.
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In the following, we consider the cases when T = IR, T = ZZ, and T = {0, 1, . . . , R− 1}.

In these cases, the operators ψ̃ and ψ in (2.36) and (2.37) are referred to as the semi-

flat grayscale operator generated by {ψt} and the flat grayscale operator generated by ψ,

respectively. When T = IR, Proposition 2.2.11(a) implies that

Xt(ψ(f)) =
⋂
s<t

ψ(Xs(f)), for all t ∈ IR. (2.38)

If ψ is ↓-continuous on P(E), then Proposition 2.2.10 implies that (2.38) reduces to

Xt(ψ(f)) = ψ(Xt(f)), for all t ∈ IR. (2.39)

In this case, the threshold sets Xt(ψ(f)) of function ψ(f) can be computed by simply

applying the binary operator ψ to the corresponding threshold sets Xt(f) of function f . As

a direct consequence of Proposition 2.2.11(b),(c), (2.39) also holds in the cases when T = ZZ

and T = {0, 1, . . . , R− 1} (except possibly at t = ∞), provided that ψ(E) = E.

Semi-flat grayscale operators preserve many useful properties of the original binary oper-

ators that generate them. We have the following result, which follows from Corollary 10.26

in [34].

2.2.13 Proposition.

(a) If {ψt} is a family of erosions (resp., dilations, openings, closings), then ψ̃, generated

by {ψt}, is an erosion (resp., dilation, opening, closing).

(b) If ψ is an erosion (resp., dilation, opening, closing), then ψ, generated by ψ, is an

erosion (resp., dilation, opening, closing). �

In particular, the translation-invariant erosion εB(A) = A & B and the translation-

invariant dilation δB(A) = A⊕B generate the grayscale erosion εB(f) = f &B, known as

the flat grayscale translation-invariant erosion, and the grayscale dilation δB(f) = f ⊕ B,

known as the flat grayscale translation-invariant dilation, respectively (for simplicity, we

write εB(f) and δB(f) instead of εB(f) and δB(f)). Similarly, we can define the flat grayscale

structural opening θB(f) = f ◦B and the flat grayscale structural closing φB(f) = f•B.

2.3 Basic Topological Concepts

Our objective in this section is to summarize basic facts about topological spaces, to be

used later in this dissertation. Most of the results are given without proof. Note, however,
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that this is not intended to be a detailed introduction on topology. For that, the reader is

referred to [24, 60].

2.3.1 Definition. Given a set E, a topological space is a pair (E,G), where G ⊆ P(E) is

such that:

(i) ∅ and E are in G,

(ii) an arbitrary union of elements in G is in G,

(iii) a finite intersection of elements in G is in G.

The family G is said to be a topology on E. "

One usually refers to the topological space E, when no confusion as to the underlying

topology G arises. Sometimes, we write G(E) instead of G. The elements of G are said to

be the open sets of E. A set A ∈ P(E) is said to be a closed set of E if Ac is open. Given

a point v ∈ E, a neighborhood of v is an open set U that contains v. The interior A◦ of

a set A is defined as the largest open set contained in A (i.e., the union of all open sets

contained in A), whereas the closure A of A is the smallest closed set that contains A (i.e.,

the intersection of all closed sets that contain A).

A family B ⊆ G is said to be a basis for the topology G on E if every open set can be

written as a union of elements of B. In this case, G is said to be generated by B. Similarly,

a family U ⊆ G is said to be a subbasis for the topology G on E if every open set can be

written as a union of finite intersections of elements of U . In this case, G is also said to be

generated by U . Note that the family consisting of all finite intersections of elements of U
is a basis for G. In addition, the topology generated by a basis B (resp. subbasis U) is the

smallest topology that contains B (resp. U).

If E is any set, then the collection P(E) of all subsets of E is a topology on E. This

is called the discrete topology on E. In this case, any subset of E is both open and closed.

The set of points in E forms a basis for the discrete topology. Another example is given

by the topology G = {∅, E}. This is known as the indiscrete topology on E. A more useful

example however is the topology Ge on IRn generated by the open balls B(v, r) = {u ∈ IRn |
d(u, v) < r}, for v ∈ IRn and r > 0, where d is the Euclidean distance in IRn. This is

known as the Euclidean topology on IRn, and the topological space (IRn,Ge) is known as the

n-dimensional Euclidean space.
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Two of the most important topological concepts are the notions of convergence and

continuity. A sequence (vi)i∈ZZ+ of points in a topological space E is said to converge to a

point v ∈ E if, for every neighborhood U of v, there exists an index i0 such that vi ∈ U , for

all i ≥ i0. In this case, we write vi → v. We say that v is an accumulation point of (vi) if,

for every neighborhood U of v and every index i0, there exists an i ≥ i0 such that vi ∈ U .

Clearly, v is an accumulation point of (vi) if there is a subsequence (vik) of (vi) such that

vik → v, as k → ∞. If E and F are topological spaces, then a function f : E → F is said

to be continuous if, for any open set V in F , the set f−1(V ) = {v ∈ E | f(v) ∈ V } is open

in E.

Arbitrary topological spaces are not very useful. One needs to impose certain restrictions

on them. In the following, we list some of the most frequently imposed restrictions.

2.3.2 Definition. Let (E,G) be a topological space.

(a) (E,G) is said to be a Hausdorff space if, given two distinct points v1, v2 ∈ E, there

exist neighborhoods U1 of v1 and U2 of v2 such that U1 ∩ U2 �= ∅.

(b) (E,G) is said to have a countable basis if the topology G has a basis consisting of a

countable number of elements.

(c) (E,G) is said to be a metric space if the topology G is generated by nonempty open

balls B(v, r) = {u ∈ E | d(u, v) < r}, for v ∈ E and r > 0, where d is a distance

function in E [39].

(d) (E,G) is said to be a compact space if every open cover of E (i.e., a family {Uα}
of open subsets of E such that E =

⋃
Uα), has a finite subcover (i.e., open sets

U1, . . . , Un ∈ {Uα} such that E = U1 ∪ · · · ∪ Un). "

We now make a few remarks. In a Hausdorff space, all points are closed sets. It is

obvious that every metric space is Hausdorff and has a countable basis. One of the facts

that make compactness very useful is that every sequence in a compact space must have at

least one accumulation point in that space. In the case of a metric space, this property is

equivalent to compactness. The Euclidean space is a metric space. It is therefore Hausdorff

and has a countable basis, but it is not compact, since {B(0, r) | r > 0} is an open cover

of IRn that has no finite subcover.
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Topological spaces with countable bases are very useful since they allow a straightforward

characterization for convergence and continuity. This is clear from the following proposition.

2.3.3 Proposition. Let E be a topological space that has a countable basis.

(a) If A ⊆ E, then v ∈ A if and only if there is a sequence (vi) in A such that vi → v.

(b) A function f : E → F is continuous if and only if, for every sequence (vi) in E such

that vi → v, we have that f(vi) → f(v). �

Given a topological space (E,G), let A be a subset of E. Then, the family G ∩ A =

{U ∩A | U ∈ G} is a topology on A, known as the subspace topology. The space (A,G ∩A)

is called a topological subspace of E. Any property of a topological space, such as the ones

listed in Definition 2.3.2, applies to the topological subspace via the subspace topology.

A subset A ⊆ E is said to be compact if the corresponding topological subspace (A,G ∩A)

is a compact space.

It is easy to see that any topological subspace of a Hausdorff space with a countable basis

is also Hausdorff with a countable basis. As for compactness, we have the following result.

2.3.4 Proposition.

(a) Any closed subset of a compact space is compact.

(b) Any compact subset of a Hausdorff space is closed. �

As a corollary, a subset of a compact Hausdorff space is compact if and only if it is

closed. As we have seen, the Euclidean space is not compact, so a closed subset in IRn need

not be compact. A characterization of the compact subsets of the Euclidean space is given

by the following result. A subset A in IRn is bounded if there is a ball B(0, r) with finite

radius that contains A.

2.3.5 Proposition. A subset of the Euclidean space is compact if and only if it is closed

and bounded. �

In particular, note that any closed and bounded subset of IRn defines a compact Haus-

dorff subspace with countable basis.

Compact Hausdorff spaces are nice (they belong to a class of spaces known as “normal

spaces”), in the sense that closed sets behave as points. This is stated by the following

proposition.
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2.3.6 Proposition. Let E be a compact Hausdorff space. Given any two nonempty disjoint

closed subsets A1, A2 of E, there are disjoint open subsets U1, U2 of E such that A1 ⊂ U1

and A2 ⊂ U2. �

We conclude this subsection with the following result (since this is not a basic fact of

topology, a proof is supplied).

2.3.7 Proposition. Let E be a compact space and {Aα} be an arbitrary decreasing family

of nonempty closed sets in E.

(a) The set
⋂
Aα is nonempty.

(b) If U is an open set and
⋂
Aα ⊂ U , then there is some index α′ such that Aα′ ⊂ U . �

Proof. (a): Suppose that
⋂
Aα = ∅. If Uα = Acα, then {Uα} is a family of open subsets of

E such that
⋃
Uα = (

⋂
Aα)c = E; i.e., {Uα} is an open cover of E. But, clearly, no finite

subcover exists. This contradicts the assumption that E is compact. Hence, we must have

that
⋂
Aα �= ∅.

(b): Let Fα = Aα � U . If Aα �⊂ U , for all indices α, then {Fα} is a decreasing family of

nonempty closed subsets of E. By using part (a), we have that ∅ �= ⋂Fα =
⋂

(Aα � U) =

(
⋂
Aα) � U ⇒ ⋂Aα �⊂ U , which is a contradiction. Hence, there must be some index α′

such that Aα′ ⊂ U . Q.E.D.

2.4 Hit-or-Miss Topology

The hit-or-miss topology is a topology on the family F(E) of closed sets of a topological

space E. By assigning a topology to F(E), one is able to study convergence of closed

sets and (semi-) continuity properties of (closed) set-valued functions. In this section, our

objective is to provide a brief introduction to the hit-or-miss topology. For a comprehensive

treatment, the reader is referred to [34, 56].

Unless otherwise specified, we assume that the space E is a compact Hausdorff space

with a countable basis (e.g., E may be a closed and bounded subset of IRn furnished with

the Euclidean topology). The following is an intuitive definition of set convergence.
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2.4.1 Definition. Given a sequence (Ai) of nonempty sets in F(E), the limit superior

limAi and the limit inferior limAi are defined as

limAi = {v ∈ E | there exists a subsequence (vik ∈ Aik) s.t. vik → v}, (2.40)

limAi = {v ∈ E | there exists a sequence (vi ∈ Ai) s.t. vi → v}. (2.41)

"

Clearly, limAi is the collection of all accumulation points of sequences (vi ∈ Ai), whereas

limAi is the collection of all limit points of sequences (vi ∈ Ai). It is obvious that limAi ⊆
limAi. If limAi = limAi = A, then the sequence (Ai) is said to converge to A and we write

limAi = A. For properties and examples of these limiting operations, the reader is referred

to [34, Chapter 7].

It so happens that this notion of set convergence corresponds to convergence in a topol-

ogy on F(E), called the hit-or-miss topology [34, 56].

2.4.2 Definition. Given a topological space (E,G) with a countable basis that is compact

and Hausdorff, the hit-or-miss (H-M) topology on F(E) is the topology generated by the

subbasis {FF | F ∈ F} ∪ {FG | G ∈ G}, where

FF = {A ∈ F(E) | A ∩ F = ∅}, (2.42)

FG = {A ∈ F(E) | A ∩G �= ∅}. (2.43)

"

In other words, the hit-or-miss topology is the smallest topology on F(E) such that each

family in F(E) whose elements miss a closed set or hit an open set is open in F(E). We

remark that the hit-or-miss topology has a more general formulation than the one adopted

here, where compactness is relaxed to local compactness, see [34]. As formulated here, the

hit-or-miss topology reduces to a topology that is known by several names in the literature,

such as H-topology, exponential topology, and Vietoris topology. See [41, Section 17] and

the bibliographical notes in [34, Section 7.8].

Convergence of a sequence (Ai) of closed sets to a closed set A in the H-M topology is

denoted by Ai
F→ A. The following result follows from Propositions 7.25 and 7.26 in [34].

2.4.3 Proposition. Given a sequence (Ai) of closed sets, we have that Ai
F→ A if and only

if limAi = A. �
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It can be shown that the H-M topology has a countable basis [34, Theorem 7.24]. There-

fore, by Proposition 2.3.3, sequential convergence is appropriate to characterize closure of

families in F(E) and continuity of operators on F(E).

In this dissertation, we are interested in the semi-continuity properties of functions f :

A → F(E) from a subspace A ⊆ E into F(E). Note that, since E has a countable basis,

it follows from Proposition 2.3.3(b) that f is continuous if and only if vi → v in A implies

that f(vi)
F→ f(v). In similar fashion to the continuity of real-valued functions, we have the

following definition.

2.4.4 Definition. A function f : A→ F(E) is said to be hit-or-miss upper semi-continuous

(H-M u.s.c) if

vi → v ⇒ lim f(vi) ⊆ f(v), (2.44)

whereas f is said to be hit-or-miss lower semi-continuous (H-M l.s.c.) if

vi → v ⇒ f(v) ⊆ lim f(vi). (2.45)

"

Obviously, f is continuous or H-M continuous, if and only if f is both H-M u.s.c. and

H-M l.s.c. The next result follows from Propositions 7.25 and 7.26 in [34].

2.4.5 Proposition. Let f : A→ F(E) be a function from a subspace A ⊆ E into F(E).

(a) The function f is H-M u.s.c. if and only if, for every closed subset F of E and every

sequence (vi) converging to v in A such that f(v)∩F = ∅, we have that f(vi)∩F = ∅,

eventually.

(b) The function f is H-M l.s.c. if and only if, for every open subset G of E and every

sequence (vi) converging to v in A such that f(v)∩G �= ∅, we have that f(vi)∩G �= ∅,

eventually. �

In other words, f is H-M u.s.c. if and only if, given a closed set F and vi → v in A such

that f(v) misses F , there is only a finite number of indices for which f(vi) does not miss F .

A similar remark applies to an H-M l.s.c. function.
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2.5 Fuzzy Sets and Fuzzy Topological Spaces

Fuzzy sets generalize the notion of ordinary sets via the idea of a degree of membership

to a reference set. In the original definition, due to L. Zadeh [96], a fuzzy set is a function

µ from a reference set E into the real interval [0, 1]. The degree of membership of a point

v ∈ E to the fuzzy set µ is given by µ(v). Hence, µ is also referred to as the membership

function. This generalizes the notion of the characteristic function cA: E → {0, 1} of a

crisp set A ⊆ E, given by

cA(v) =

 1, if v ∈ A
0, if v ∈ E �A

. (2.46)

Hence, crisp sets are special cases of fuzzy sets.

It has been recognized that the definition of a fuzzy set can be extended to include

functions from E into any given infinite distributive lattice T furnished with a negation [26,

63]. This leads to the following definition.

2.5.1 Definition. Let E be a reference set and T an infinite distributive lattice furnished

with a negation. A T -fuzzy subset of E is a function µ: E → T . The collection of all

T -fuzzy subsets of E is denoted by T E . "

For instance, we may choose T to be ZZ, IR, or products of those. Of course, fuzzy sets in

the Zadeh sense correspond to the special case T = [0, 1]. Crisp sets in the T -fuzzy case are

fuzzy sets that take values in {O, I}, where O and I are the least and the greatest elements

of T , respectively. For convenience, and if there is no risk of confusion, we sometimes refer

to T -fuzzy sets as simply fuzzy sets. In addition, we usually denote a fuzzy set that happens

to be crisp by A and a constant fuzzy set that takes on value τ on E by τ , for τ ∈ T .

A T -fuzzy point vτ is a fuzzy set that takes on value τ ∈ T � {O} at v ∈ E, and O

everywhere else. A crisp point v ∈ E corresponds to the special case v = vI .

The fuzzy inclusion relation between two fuzzy sets µ1, µ2 ∈ T E is defined by the usual

partial ordering of functions: µ1 ≤ µ2 if µ1(v) ≤ µ2(v), for all v ∈ E. It is clear that T E
with the fuzzy inclusion relation is an infinite distributive lattice. The fuzzy union and fuzzy

intersection of a family {µα} of fuzzy sets in T E are given by the usual pointwise supremum∨
µα and pointwise infimum

∧
µα, respectively. The fuzzy complement µ∗ of a fuzzy set

µ ∈ T E is defined by µ∗(v) = (µ(v))∗, for v ∈ E, where ∗ denotes the negation in lattice T .
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Given a fuzzy set µ ∈ T E , one can define crisp subsets of E by means of

Xτ (µ) = {v ∈ E | µ(v) ≥ τ} and Yτ (µ) = {v ∈ E | µ(v) �≤ τ}, (2.47)

for every τ ∈ T . The sets Xτ (µ) and Yτ (µ) are level sets of the fuzzy set µ. Note that,

when T is a chain, we have that Yτ (µ) = {v ∈ E | µ(v) > τ}, for τ ∈ T .

The concept of fuzzy sets has led to a theory of topological fuzzy spaces. The original

definition, which we adopt here, is due to C. L. Chang [18].

2.5.2 Definition. Given a set E, a T -fuzzy topological space is a pair (E,∆), where ∆ ⊆
T E is such that:

(i) the constant fuzzy sets O and I are in ∆,

(ii) an arbitrary fuzzy union of elements in ∆ is in ∆,

(iii) a finite fuzzy intersection of elements in ∆ is in ∆.

The family ∆ is said to be a T -fuzzy topology on E. "

If there is no confusion as to the underlying lattice T , we simply use the terms fuzzy

topological space and fuzzy topology. Note that the definition of a fuzzy topological space

is formally identical to the definition of an ordinary topological space (see Definition 2.3.1).

The elements of ∆ are said to be the open fuzzy sets of E. A fuzzy set µ ∈ T E is closed if µ∗

is open. Note that an ordinary topological space is a fuzzy topological space where all open

and closed sets are crisp (hence, fuzzy topological spaces provide a natural generalization

of the notion of ordinary topological spaces). The concepts of interior, closure, basis, sub-

basis, indiscrete and discrete topologies are defined as in the ordinary case. Given a fuzzy

topological space (E,∆) and a crisp subset A ⊆ E, the family ∆A = {µ|A | µ ∈ ∆} is a

fuzzy topology on A, where µ|A denotes the restriction of µ to A. The pair (A,∆A) is said

to define a fuzzy subspace of E. The notions of continuity, convergence, Hausdorff space,

compactness and other important topological properties can be defined for fuzzy topological

spaces as well [18, 50, 61].

As an example, if (E,G) is an ordinary topological space, it is easy to verify that the set

of l.s.c. functions µ: E → T defines a fuzzy topology on E. This fuzzy topology, denoted

by ∆(G), is said to be topologically generated by G, and the fuzzy space (E,∆(G)) is said to

be topologically generated [49].
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Given a fuzzy topological space (E,∆), one can define a family of sets in E by means of

Yτ (∆) = {Yτ (µ) | µ ∈ ∆}, (2.48)

for τ ∈ T . The following result is easy to prove.

2.5.3 Proposition. Let (E,∆) be a T -fuzzy topological space. For each τ ∈ T � {I}, we

have that (E, Yτ (∆)) is an ordinary topological space. �

The topological spaces (E, Yτ (∆)) are called the τ -level topological spaces associated

with the fuzzy topological space (E,∆) [50]. The τ -level topological spaces are often used

to define fuzzy topological properties; e.g., one can define τ -Hausdorff spaces, or τ -compact

spaces in terms of the corresponding ordinary properties defined for the τ -level topological

spaces [52].

Note that all τ -level topological spaces of an ordinary topological space (E,G) coincide

with (E,G). It is easy to verify that all τ -level topological spaces of a topologically generated

fuzzy space (E,∆(G)) also coincide with (E,G). In this sense, a topologically generated

fuzzy space has the same properties of the original topological space.

As a matter of fact, in view of Proposition 2.1.3(b), it becomes clear that topologically

generated fuzzy spaces are special cases of the following general result (this is an extension

of [93, Proposition 3.3], which addresses the case T = [0, 1]).

2.5.4 Proposition. Let T be a lattice, and let G = {Gτ | τ ∈ T � {I}} be a family of

topologies on a space E. We have that

∆(G) = {µ ∈ T E | Yτ (µ) ∈ Gτ , for all τ ∈ T � {I}} (2.49)

is a T -fuzzy topology on E. Moreover, it is the largest T -fuzzy topology ∆ on E such that

Yτ (∆) ⊆ Gτ , for each τ ∈ T � {I}. (2.50)

�

Proof. Clearly, the constant fuzzy sets O and I are in ∆(G). For a family {µα} ⊆ ∆(G),

we have that Yτ (
∨
µα) =

⋃
Yt(µα) ∈ Gτ , since {Yt(µα)} ⊆ Gτ , for each τ ∈ T � {I}, so that∨

µα ∈ ∆(G). Similarly, for µ1, µ2 ∈ ∆(G), we have that Yτ (µ1∧µ2) = Yt(µ1)∩Yt(µ2) ∈ Gτ ,
since Yt(µ1), Yt(µ2) ∈ Gτ , for each τ ∈ T � {I}, so that µ1 ∧ µ2 ∈ ∆(G). Hence, ∆(G)

is a T -fuzzy topology on E. Now, for a given τ ∈ T � {I}, let A ∈ Yτ (∆(G)); i.e.,
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A = Yτ (µ), for some µ ∈ ∆(G). It follows from the definition of ∆(G) that A ∈ Gτ . Hence,

Yτ (∆(G)) ⊆ Gτ , for each τ ∈ T � {I}. Finally, let ∆ be a T -fuzzy topology on E such that

Yτ (∆) ⊆ Gτ , for each τ ∈ T � {I}. If µ ∈ ∆, then Yτ (µ) ∈ Gτ , for each τ ∈ T � {I}, so that

µ ∈ ∆(G). Hence, ∆ ⊆ ∆(G). Q.E.D.

In the case of a topologically generated fuzzy space, we have that G = {Gτ = G | τ ∈
T �{I}}, where G is a topology on E, and ∆(G) = ∆(G). In this case, the inequality (2.50)

becomes an equality. For a simple counterexample that shows that the inclusion in (2.50)

is in general strict, let T = IR, and define the family of topologies G = {Gτ | τ ∈ IR � {∞}}
on E by Gτ = {∅, E}, if τ is rational, or Gτ = G ⊃ {∅, E}, otherwise, where G is any

topology on E, larger than {∅, E}. It is easy to show that the IR-fuzzy topology ∆(G)

generated by G contains only the constant IR-fuzzy sets. Hence, for irrational τ , we have

that Yτ (∆(G)) = {∅, E} ⊂ G = Gτ (this example is adapted from [93]).

Next, we give a nontrivial example where equality in (2.50) is achieved. First, we need

to define the concept of a topology pyramid.

2.5.5 Definition. A topology pyramid on E is a family P = {Gτ | τ ∈ IR � {∞}} of

topologies on E such that:

(i) the topologies are increasingly coarser; i.e., Gτ1 ⊆ Gτ2 , for τ2 ≤ τ1,

(ii) Gτ =
⋃
s>τ Gs, for all τ ∈ IR � {∞}.

The topologies Gτ are said to be the τ -levels of the topology pyramid P, for τ ∈ IR�{∞}. "

We have the following result.

2.5.6 Proposition. Let P = {Gτ | τ ∈ IR � {∞}} be a topology pyramid on a space E.

We have that

∆(P) = {µ ∈ IRE | Yτ (µ) ∈ Gτ , for all τ ∈ IR � {∞}} (2.51)

is the largest IR-fuzzy topology ∆ on E such that

Yτ (∆) = Gτ , for each τ ∈ IR � {∞}. (2.52)

�

Proof. We only need to show that Gτ ⊆ Yτ (∆(P)), for each τ ∈ IR � {∞}, since the rest

follows from Proposition 2.5.4. Given τ ∈ IR � {∞}, let G ∈ Gτ . From property (ii) of
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topology pyramids, we have that G ∈ ⋃s>τ Gs ⇒ G ∈ Gτ0 , for some τ0 > τ . Since P is

decreasing, we have that G ∈ Gs, for all s < τ0. Now, consider the fuzzy set µ ∈ IRE ,

given by

µ(v) =

 τ0, if v ∈ G
−∞, otherwise

, (2.53)

for v ∈ E. It is clear that

Ys(µ) =

 G, if s < τ0

∅, otherwise
, (2.54)

so that Ys(µ) ∈ Gs, for all s ∈ IR � {∞}; i.e., µ ∈ ∆(P). In addition, Yτ (µ) = G, so that

G ∈ Yτ (∆(P)). Hence, Gτ ⊆ Yτ (∆(P)), as required. Q.E.D.

Proposition 2.5.6 is a specialization to the case of topology pyramids of a more general

result, due to P. Wuyts [93, Thm. 4.3], which gives necessary and sufficient conditions on a

family of topologies G = {Gτ | τ ∈ [0, 1)} such that the [0, 1]-fuzzy topology ∆(G) generated

by G satisfies Yτ (∆(G)) = Gτ , for each τ ∈ [0, 1) (this result can be extended from [0, 1]

to IR without difficulty).





Chapter 3

Classical Connectivity

As we mentioned in Chapter 1, connectivity is classically defined using a topological or a

graph-theoretic framework, and their fuzzy analogs. In this chapter, we provide a thorough

review of several classical notions of connectivity on topological spaces and graphs, both

in the ordinary and fuzzy sense. Basic results, which are easy or can be found in standard

textbooks, are given without proof.

3.1 Topological Connectivity

In this section, we review the notions of connectivity and path-connectivity of ordinary

topological spaces. For more details, the reader is referred to [24, 60].

3.1.1 Definition. A topological space E is said to be connected if there does not exist a

pair (U1, U2) of disjoint nonempty open subsets of E such that E = U1 ∪ U2. "

This definition applies to subspaces of E via the subspace topology. Using the defi-

nitions of subspace topology and of a connected space, we arrive at the following useful

characterization of topological connectivity.

3.1.2 Proposition. Let E be a topological space. A subset A of E is connected if there

does not exist a pair (G1, G2) of open subsets of E such that

(i) A ⊆ G1 ∪G2,

(ii) A ∩G1 �= ∅ and A ∩G2 �= ∅,

(iii) A ∩G1 ∩G2 = ∅. �
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Figure 3.1: Topological connectivity on the 2-D Euclidean space: (a) Connected set. (b) Dis-
connected set.

Any pair (G1, G2) of open sets that satisfies conditions (i)–(iii) above is said to be a

separation of A. Hence, A is connected if there does not exist a separation of A. Otherwise,

it is said to be disconnected. Note that G1 and G2 are not required to be disjoint, as long

as their intersection is disjoint from A, which is condition (iii). Note also that, according

to this definition, the empty set and the points are always connected.

Given a subset A, its connected components are defined as the maximal connected subsets

of A; i.e., C is a connected component of A if it is connected and there is no other connected

subset of A that contains C. Of course, A is connected if and only if it contains a single

connected component.

For instance, the interval [0, 1] in the Euclidean line IR is connected, whereas the union

of intervals [0, 1]∪[2, 3] is not, since it consists of two connected components, [0, 1] and [2, 3].

Fig. 3.1 depicts an example in the 2-D Euclidean space. The set A depicted in Fig. 3.1(a)

is connected since it cannot be separated by any two open sets in E (the open sets G1

and G2 depicted in Fig. 3.1(a) satisfy (i) and (ii) in Proposition 3.1.2 but do not satisfy

(iii)). On the other hand, the set A depicted in Fig. 3.1(b) is disconnected, since there

exists a separation of A (the open sets G1 and G2 depicted in Fig. 3.1(b) satisfy (i)–(iii) in

Proposition 3.1.2). Note that this set is comprised of two connected components.

The following proposition summarizes a few classical results on topological connectivity.
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3.1.3 Proposition. Let E be a topological space.

(a) If subsets {Aα} of E are connected and
⋂
Aα �= ∅, then

⋃
Aα is connected.

(b) If A is a connected subset of E, then A is connected.

(c) The connected components {Cα} of a subset A of E are disjoint and A =
⋃
Cα.

(d) The connected components of a closed subset of E are closed in E. �

Another definition of connectivity, based on topological spaces, is given below.

3.1.4 Definition. A topological space E is said to be path-connected if every two points

in E can be joined by a path, i.e., a continuous map from [0, 1] into E. "

This definition extends to subsets of E via the subspace topology. It is easy to see that

a subset A of E is path-connected if, given two points in A, there is a path in A that joins

them. For instance, [0, 1] is path-connected, but [0, 1] ∪ [2, 3] is not. Note that the empty

set and the points are path-connected. The path-connected components of a subset A of E

are the maximally path-connected subsets of A.

Path-connectivity is a specialization of topological connectivity, as stated by the next

result.

3.1.5 Proposition. Let E be a topological space.

(a) A subset A of E is path-connected if it is connected. The converse is not true in

general.

(b) If E is the Euclidean space, then an open subset A of E is path-connected if and only

if it is connected. �

The following result is the analog of Proposition 3.1.3 for path-connectivity.

3.1.6 Proposition. Let E be a topological space.

(a) If subsets {Aα} of E are path-connected and
⋂
Aα �= ∅, then

⋃
Aα is path-connected.

(b) The path-connected components {Cα} of a subset A of E are disjoint and A =
⋃
Cα. �
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Figure 3.2: The Topologist’s sine curve. The set S is connected, but not path-connected.

Note that A being path-connected does not imply that A is path-connected. Likewise,

the path-connected components of a closed set need not be closed. A classical counterex-

ample that shows these facts, and proves that connectivity does not in general imply path-

connectivity, is known as the “Topologist’s sine curve” (see Fig. 3.2). Consider the curve S

in the 2-D Euclidean space given by S = {x× sin(1/x) | 0 < x ≤ 1}. The Topologist’s sine

curve is the closure of this curve: S = ({0} × [−1, 1]) ∪ S. It can be shown that the Topol-

ogist’s sine curve is connected, but not path-connected. Furthermore, S is path-connected,

but S is not. In addition, the Topologist’s sine curve is closed and its path-connected

components are the sets {0} × [−1, 1] and S, but S is not closed.

3.2 Graph-Theoretic Connectivity

In the case when E is a discrete space, connectivity is usually defined by means of a

graph. In this section, we review the notions of connectivity and k-connectivity of (ordinary)

graphs, as well as their “subspace” versions. For more details, the reader is referred to [22].

3.2.1 Definition. A graph is a pair G = (V,L), where V is the set of vertices of G and

L ⊆ V × V is the set of edges of G. "

It is allowed that V = ∅, in which case the resulting graph G = ∅ is referred to as the

null graph. The number |V | of vertices of G is the order of the graph. Note that |V | may

be infinite, and that |V | = 0 for the null graph. If (v, w) ∈ L, v and w are said to be
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adjacent, for v, w ∈ V . We assume that (v, w) ∈ L ⇒ (w, v) ∈ L, for v, w ∈ V ; i.e., the

graph G = (V,L) is undirected.

If G = (V,L) is a graph, a path in G between two given vertices v1, vK ∈ V is a sequence

Π = {v1, v2, . . . , vK}, where vi ∈ V , such that (vi, vi+1) ∈ L, for i = 1, 2, . . . ,K − 1. The

definition of a connected graph is given below.

3.2.2 Definition. A graph G = (V,L) is said to be connected if any two of its vertices are

linked by a path in G. "

Recall that the definition of a connected topological space can be extended to subsets

of the space via the concept of topological subspace. In similar fashion, the definition of a

connected graph can be extended to subsets of the graph by means of the concept of the

induced subgraph.

3.2.3 Definition. Let G = (V,L) be a graph, and U ⊆ V be a subset of the vertices of G.

The graph G[U ] = (U,L′), where L′ ⊆ L is the subset of the edges of G that link the vertices

in U , is a graph known as the subgraph induced by U . "

This leads to the following definition.

3.2.4 Definition. Let G = (V,L) be a graph. A subset U ⊆ V of vertices of G is said to

be connected in G if the induced subgraph G[U ] is connected. "

Hence, U is connected in G if any two of its vertices are linked by a path with vertices

in U and edges in L. If U is not connected, it is said to be disconnected. Note that the

empty set and the points are connected. The maximal connected subsets of U are called

the connected components of U .

The following result is easy to prove.

3.2.5 Proposition. Let G = (V,L) be a graph.

(a) If subsets {Uα} of V are connected and
⋂
Uα �= ∅, then

⋃
Uα is connected.

(b) The connected components {Uα} of a subset U of V are disjoint and U =
⋃
Uα. �

Two cases of interest to image processing and analysis are obtained by taking the set

of vertices to be points (m,n) in a subset of the two-dimensional discrete space ZZ2. Two

vertices v = (m,n) and v′ = (m′, n′) are said to be 4-adjacent if |m −m′| + |n − n′| = 1,
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V V

Figure 3.3: Graph-theoretic connectivity on ZZ2, assuming 8-adjacency connectivity:
(a) Connected set. (b) Disconnected set.

whereas v and v′ are said to be 8-adjacent if max{|m − m′|, |n − n′|} = 1. This leads to

the classical notions of 4- and 8-adjacency connectivity. Fig. 3.3 illustrates the concept of

8-adjacency connectivity. The set depicted in Fig. 3.3(a) is connected, since every pair of

points is connected by a path with vertices in the set and edges in the underlying graph.

On the other hand, the set depicted in Fig. 3.3(b) is disconnected. Note that this set is

comprised of two connected components. In similar fashion, one can define 6-, 18- and 26-

adjacency connectivity on the discrete space ZZ3, as well as higher-dimensional adjacency

connectivities on ZZn, for n ≥ 4.

Another definition of graph-theoretic connectivity, which generalizes the definition dis-

cussed above, is given next.

3.2.6 Definition. Given a positive integer k, a graph G = (V,L) is said to be k-connected

if G = ∅, or |V | ≥ k and G[V � U ] is connected for each U ⊆ V such that |U | < k. "

In other words, a graph is k-connected if it is the null graph, or if one is able to delete

any number of vertices less than k and still obtain a connected graph. It is obvious that,

when k = 1, k-connectivity reduces trivially to graph-theoretic connectivity, given by Def-

inition 3.2.2. In addition, it is clear that, if k1 ≥ k2, then k1-connectivity implies k2-

connectivity. This property means that k-connectivity defines a degree of connectivity for

graphs, as given next.
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3.2.7 Definition. Let G = (V,L) be a graph. The value

κ = sup {k ∈ ZZ+ | G is k-connected} (3.1)

is called the degree of connectivity of G. "

There is an alternative characterization of k-connectivity, given by the next proposition.

3.2.8 Proposition. A graph is k-connected if and only if any two vertices in the graph are

linked by k non-intersecting paths. �

By using the concept of induced subgraphs, one is able to extend the definition of k-

connectivity to subsets of vertices.

3.2.9 Definition. Given a graph G = (V,L), a subset U of V is said to be k-connected

in G if U = ∅, or |U | ≥ k and U �W is connected in G for all subsets W ⊆ U such that

|W | < k. "

As before, 1-connectivity reduces trivially to plain graph-theoretic connectivity and, if

k1 ≥ k2, then k1-connectivity implies k2-connectivity. In addition, the maximal k-connected

subsets of U are called the k-connected components of U .

The notion of degree of connectivity also extends naturally to subsets of vertices, via

the following definition.

3.2.10 Definition. Let G = (V,L) be a graph, and consider the mapping κG : P(V ) →
ZZ+, given by

κG(U) = sup {k ∈ ZZ+ | U is k-connected in G}. (3.2)

The quantity κG(U) is the degree of connectivity of U in G. "

The following result is the extension of Proposition 3.2.5 to the case of k-connectivity.

3.2.11 Proposition. Let G = (V,L) be a graph, and k be a positive integer.

(a) If subsets {Uα} of V are k-connected and |⋂Uα | ≥ k, then
⋃
Uα is k-connected.

(b) The k-connected components of a subset U of V overlap by at most k− 1 vertices. �
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Proof. (a): Suppose that W ⊆ ⋃Uα with |W | < k. By definition of k-connectivity,

we need to show that (
⋃
Uα) �W is connected. Since Uα is assumed to be k-connected,

Uα�W is connected, for all α. Moreover,
⋂

(Uα�W ) = (
⋂
Uα)�W �= ∅, since |⋂Uα | ≥ k.

Therefore, (
⋃
Uα) �W =

⋃
(Uα �W ) is connected.

(b): If two distinct k-connected components Uα and Uβ of U overlap by k vertices or

more, then it follows from part (a) that Uα∪Uβ is k-connected. In this case however neither

Uα nor Uβ are k-connected components of U , which is a contradiction. Therefore, Uα and

Uβ should overlap by at most k − 1 vertices. Q.E.D.

When k = 1, the above result clearly reduces to Proposition 3.2.5. Note that, if k > 1,

the union of the k-connected components of a set U does not necessarily equal U .

Fig. 3.4 provides an example, where G = (ZZ2, L). The set depicted in Fig. 3.4(a) is

2-connected, since one can delete any point and obtain an 8-adjacency connected set or,

equivalently, there are two non-intersecting paths between any two points. However, this

set is clearly not 3-connected, since it is possible to delete two vertices and obtain a set

that is not 8-connected. In particular, the degree of connectivity of this set is 2. On

the other hand, the set depicted in Fig. 3.4(b) is 1-connected, or simply connected, but

not 2-connected, because removing the indicated cutvertex [22] produces a set that is not

connected, according to 8-adjacency connectivity. Equivalently, any two paths between a

point on the left bulge and a point on the right bulge must join at the cutvertex, so it

is not possible to find two non-intersecting paths linking these two points. In particular,

the degree of connectivity of this set is 1. We mention that, in graph theory, 2-connected

components are also called blocks [22].

3.3 Fuzzy Topological Connectivity

Several definitions of connectivity on fuzzy topological spaces have appeared in the

literature [1, 25, 48, 51, 61, 63]. In this subsection, we examine two of them, which are both

natural extensions of the notion of ordinary topological connectivity.

First, we define the concept of τ -connectivity for fuzzy topological spaces (this definition

is similar to the one in [63, Defn. 3.1]). Recall that “∗” denotes the negation associated

with lattice T .
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(a) (b)

cutvertex

Figure 3.4: Graph-theoretic k-connectivity and degree of connectivity in G = (ZZ2, L),
assuming 8-adjacency connectivity: (a) A set that is 2-connected, but not 3-connected. Its
degree of connectivity is 2. (b) A set that is connected, but not 2-connected. Its degree of
connectivity is 1.

3.3.1 Definition. A T -fuzzy topological space (E,∆) is said to be τ -connected, for τ ∈
T � {O}, if there does not exist a pair (µ1, µ2) of disjoint nonzero open fuzzy sets in ∆

such that (µ1 ∨ µ2)(v) �≤ τ∗, for all v ∈ E. If (E,∆) is I-connected, it is said to be fully

connected, whereas, if (E,∆) is not τ -connected for any τ ∈ T � {O}, it is said to be fully

disconnected. "

Note that τ -connectivity defines a degree of connectivity for fuzzy topological spaces, in

the sense that, if τ1 ≥ τ2, then τ1-connectivity implies τ2-connectivity.

The following result gives a sufficient condition for a fuzzy topological space to be τ -

connected.

3.3.2 Proposition. Let (E,∆) be a T -fuzzy topological space. For τ ∈ T � {O},

(E, Yτ∗(∆)) is connected ⇒ (E,∆) is τ -connected. (3.3)

�

Proof. We show the contrapositive of (3.3). Suppose that (E,∆) is not τ -connected.

Then, there exists a pair (µ1, µ2) of disjoint nonzero open fuzzy sets in ∆ such that

(µ1 ∨ µ2)(v) �≤ τ∗, for all v ∈ E; i.e., E = Yτ∗(µ1∨µ2) = Yτ∗(µ1)∪Yτ∗(µ2). Since Yτ∗(µ1) and

Yτ∗(µ2) are disjoint nonempty open sets in (E, Yτ∗(∆)), this space is disconnected. Q.E.D.

The condition given in Proposition 3.3.2 is not necessary, in general. For a counterex-

ample, let E = {v1, v2}, T = {0, 1, 2}, and ∆ = {{0, 0}, {1, 1}, {2, 1}, {1, 2}, {2, 2}}, where
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{τ1, τ2} denotes the fuzzy set given by µ(v1) = τ1, µ(v2) = τ2. It is easy to check that, with

τ∗ = 2 − τ , (E,∆) is a T -fuzzy topological space that is fully connected, since there is no

pair (µ1, µ2) of disjoint nonzero open fuzzy sets in ∆ such that (µ1 ∨ µ2)(v) > 0, for all

v ∈ E. In particular, (E,∆) is 1-connected. However, Y1∗(∆) = Y1(∆) = {∅, E, {v1}, {v2}},

so that (E, Y1∗(∆)) is disconnected.

In the particular case of IR-fuzzy topological spaces based on topology pyramids, dis-

cussed in Chapter 2, the condition in Proposition 3.3.2 is both necessary and sufficient.

This is shown by the following proposition (note that in this case T = IR, with τ∗ = −τ ,
for τ ∈ IR).

3.3.3 Proposition. Let P = {Gτ | τ ∈ IR � {∞}} be a topology pyramid on E, and let

(E,∆(P)) be the associated IR-fuzzy topological space, where ∆(P) is given by (2.51). For

τ ∈ IR � {−∞},

(E,∆(P)) is τ -connected ⇔ (E, Y−τ (∆(P))) = (E,G−τ ) is connected. (3.4)
�

Proof. The reverse implication follows from Proposition 3.3.2. We now establish the direct

implication by showing its contrapositive. Given τ ∈ IR � {−∞}, suppose that (E,G−τ ) is

disconnected. Then, there exists a pair (U1, U2) of disjoint nonempty open sets in G−τ such

that U1 ∪ U2 = E. Since P is a topology pyramid, we have G−τ =
⋃
s>−τ Gs, so that there

exists a τ ′ > −τ such that U1, U2 ∈ Gτ ′ . In addition, since Gτ ′ ⊆ Gs, for all s ≤ τ ′, we have

that U1, U2 ∈ Gs, for all s ≤ τ ′. Now, consider the fuzzy sets µ1, µ2 ∈ IRE , given by

µ1(v) =

 τ ′, if v ∈ U1

−∞, otherwise
and µ2(v) =

 τ ′, if v ∈ U2

−∞, otherwise
. (3.5)

It is clear that

Ys(µ1) =

 U1, if s < τ ′

∅, otherwise
and Ys(µ2) =

 U2, if s < τ ′

∅, otherwise
, (3.6)

so that Ys(µ1), Ys(µ2) ∈ Gs, for all s ∈ IR�{∞}. From (2.51), it follows that µ1, µ2 ∈ ∆(P).

But, clearly, µ1, µ2 are disjoint nonzero open fuzzy sets such that (µ1 ∨ µ2)(v) = τ ′ �≤ −τ ,
for all v ∈ E. Hence, (E,∆(P)) is not τ -connected. Q.E.D.

As a consequence of the above result, a fuzzy topological space based on a topology

pyramid P = {Gτ | τ ∈ IR � {∞}} is fully connected if and only if the base topological space

(E,G−∞) is connected.
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The definition of τ -connectivity applies to subsets of E via the notion of fuzzy sub-

space topology. This leads to the following useful characterization (compare with Proposi-

tion 3.1.2). Recall that A denotes a fuzzy set that happens to be crisp.

3.3.4 Proposition. Let (E,∆) be a T -fuzzy topological space. For τ ∈ T � {O}, a subset

A of E is τ -connected if there does not exist a pair (µ1, µ2) of open fuzzy sets in (E,∆)

such that

(i) (µ1 ∨ µ2)(v) �≤ τ∗, for v ∈ A,

(ii) A ∧ µ1 �= O and A ∧ µ2 �= O,

(iii) A ∧ µ1 ∧ µ2 = O. �

Any pair (µ1, µ2) of open fuzzy sets that satisfies conditions (i)–(iii) above is said to be

a τ -separation of A. Note that the empty set and the points in E can never be τ -separated,

so they are τ -connected, for every τ ∈ T �{O}. The τ -connected components of a set A ⊆ E
are the maximal τ -connected subsets of A.

The next result is the subspace version of Proposition 3.3.3.

3.3.5 Proposition. Let P = {Gτ | τ ∈ IR � {∞}} be a topology pyramid on E, and let

(E,∆(P)) be the associated IR-fuzzy topological space, where ∆(P) is given by (2.51). For

a given subset A ⊆ E and τ ∈ IR � {−∞},

A is τ -connected in (E,∆(P)) ⇔ A is connected in (E,G−τ ). (3.7)

�

Proof. “⇐”: We show the contrapositive. Given τ ∈ IR � {−∞}, suppose that A is

not τ -connected in (E,∆(P)); i.e., there exists a τ -separation (µ1, µ2) of A in ∆(P). Let

Gi = Y−τ (µi), for i = 1, 2. We show that (G1, G2) is a separation of A in G−τ . Since µ1, µ2 ∈
∆(P), we have that G1, G2 ∈ G−τ , by Proposition 2.5.6. The condition (µ1 ∨ µ2)(v) �≤ −τ ,
for v ∈ A is clearly equivalent to A ⊆ Y−τ (µ1 ∨ µ2) = Y−τ (µ1) ∪ Y−τ (µ2) = G1 ∪G2. Also,

A ∧ µ1 ∧ µ2 = O ⇒ ∅ = Y−τ (A ∧ µ1 ∧ µ2) = Y−τ (A) ∩ Y−τ (µ1) ∩ Y−τ (µ2) = A ∩ G1 ∩ G2.

Finally, let i ∈ {1, 2}. Clearly, A ∧ µi �= O implies that there is a v ∈ A s.t. µi(v) > −∞.

Since (µ1 ∨ µ2)(v) �≤ −τ and µ1, µ2 are disjoint over A, we conclude that µi(v) �≤ −τ ; i.e.,

∅ �= A ∩ Y−τ (µi) = A ∩Gi. Hence, A is not connected in (E,G−τ ).
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“⇒”: We show the contrapositive. Given τ ∈ IR � {−∞}, suppose that A is not con-

nected in (E,G−τ ); i.e., there exists a separation (G1, G2) of A in G−τ . From property (ii) of

topology pyramids, we have that G−τ =
⋃
s>−τ Gs, which implies that there exists a τ0 > −τ

such that G1, G2 ∈ Gτ0 . In addition, since P is decreasing, we have that G1, G2 ∈ Gs,
for all s < τ0. Now, consider the fuzzy sets µ1, µ2 ∈ IRE , given by

µ1(v) =

 τ0, if v ∈ G1

−∞, otherwise
and µ2(v) =

 τ0, if v ∈ G2

−∞, otherwise
, (3.8)

for v ∈ E. We show that (µ1, µ2) is a τ -separation of A in ∆(P). It is clear that

Ys(µ1) =

 G1, if s < τ0

∅, otherwise
and Ys(µ2) =

 G2, if s < τ0

∅, otherwise
, (3.9)

so that Ys(µ1), Ys(µ2) ∈ Gs for all s ∈ IR�{∞}; i.e., µ1, µ2 ∈ ∆(P). Note that A ⊆ G1 ∪G2

implies that (µ1∨µ2)(v) = τ0 �≤ −τ , for all v ∈ A. Also, A∩Gi �= ∅ implies that there exists

a v ∈ A such that µi(v) = τ0 > −∞; i.e., µi ∧A �= O, for i = 1, 2. Finally, A∩G1 ∩G2 = ∅
implies that there does not exist v ∈ A such that v ∈ G1 and v ∈ G2; it follows that

A ∧ µ1 ∧ µ2 = O. Hence, A is not τ -connected in (E,∆(P)). Q.E.D.

The following result is the fuzzy analog of Proposition 3.1.3.

3.3.6 Proposition. Let (E,∆) be a T -fuzzy topological space. For τ ∈ T � {O}:

(a) If subsets {Aα} of E are τ -connected and
⋂
Aα �= ∅, then

⋃
Aα is τ -connected.

(b) The τ -connected components {Cα} of a subset A of E are disjoint and A =
⋃
Cα. �

Proof. (a): Suppose that
⋃
Aα is not τ -connected. Then, we can find a τ -separation of⋃

Aα into fuzzy open sets µ1 and µ2. Pick a point v ∈ ⋂Aα. We have v ∈ ⋃Aα, so that

we must have either v ∧ µ1 �= O or v ∧ µ2 �= O, but not both, where v denotes the fuzzy set

associated with a crisp point v ∈ E. Assume that v∧µ1 �= O. This implies, since v ∈ ⋂Aα,

that Aα ∧ µ1 �= O, for all α. Since each set Aα is τ -connected, we must have Aα ∧ µ2 = O,

for all α. But this implies that (
⋃
Aα)∧µ2 =

⋃
(Aα ∧ µ2) = O, by the infinite distributivity

of T , which contradicts the assumption that µ1, µ2 is a τ -separation of
⋃
Aα.

(b): Let C1, C2 be two τ -connected components of A such that C1 ∩ C2 �= ∅. From

part (a), we have that C = C1 ∪ C2 is τ -connected, which implies, by the maximality of

C1, C2, that C ⊆ C1 and C ⊆ C2, that is, C1 = C2. Hence, all τ -connected components
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Figure 3.5: An example of level connectivity. The underlying fuzzy topological space is the
ordinary Euclidean line. The fuzzy set µ1 is level connected but the fuzzy set µ2 is not,
since Yτ (µ2) is not connected.

of A are disjoint. Now, for v ∈ A, we have that either {v} is a τ -connected component of

A or v ∈ Cα, for some τ -connected component Cα of A. Hence, A =
⋃
v∈A v ⊆ ⋃Cα ⇒

A =
⋃
Cα. Q.E.D.

Another type of fuzzy connectivity, which applies to fuzzy subsets of E, and thus to

grayscale images defined on E, is defined next (this definition is similar to the one in [48,

Defn. 2.6]).

3.3.7 Definition. Let (E,∆) be a T -fuzzy topological space. A fuzzy set µ ∈ T E is said to

be level connected if the level sets Yτ (µ) are connected in the topological space (E, Yτ (∆)),

for all τ ∈ T � {I}. Otherwise, µ is said to be level disconnected. "

Clearly, this definition applies to crisp subsets of E as well. In particular, the space

(E,∆) is level connected if (E, Yτ (∆)) is connected, for all τ ∈ T � {I}. Fig. 3.5 illustrates

level connectivity, where the fuzzy topological space is taken to be the ordinary Euclidean

line.

Note that the empty set and the fuzzy points in T E are level connected. The level

connected components of a fuzzy set µ ∈ T E are the maximal level connected fuzzy subsets

of µ.

3.3.8 Definition. Given a family {µα} of fuzzy sets in T E , we say that {µα} is overlapping

if
⋂
α{Yτ (µα) | Yτ (µα) �= ∅} �= ∅, for every τ ∈ T � {I}. "
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Note that, if {Aα} is a family of subsets of E, then {Aα} is overlapping if and only if⋂
Aα �= ∅. Hence, the notion of overlapping for fuzzy sets is a generalization of the ordinary

notion of set overlapping.

3.3.9 Proposition. Let (E,∆) be a fuzzy topological space.

(a) If {µα} is an overlapping family of level connected fuzzy sets in T E , then
∨
µα is level

connected.

(b) The level connected components {µα} of a fuzzy set µ ∈ T E are non-overlapping

and µ =
∨
µα. �

Proof. (a): Let τ ∈ T � {I}. Note that Yτ (
∨
µα) =

⋃
α Yτ (µα) =

⋃
α{Yτ (µα) | Yτ (µα) �=

∅}. But each Yτ (µα) is connected in (E, Yτ (∆)), since µα is level connected, and
⋂
α{Yτ (µα) |

Yτ (µα) �= ∅} �= ∅, since {µα} is overlapping. Hence, Yτ (
∨
µα) is connected in (E, Yτ (∆)),

for all τ ∈ T � {I}, so that
∨
µα is level connected.

(b): If µ1, µ2 are two overlapping level connected components of µ then, from part (a),

µ1 ∨ µ2 is level connected, so that µ1 = µ2, by the maximality of µ1, µ2. Hence, all level

connected components of µ are non-overlapping. Now, for a fuzzy point vτ ≤ µ, either vτ is

a level connected component of µ or vτ ≤ µτ , for some level connected component µα of µ.

Hence, µ =
∨
vτ ≤µ vτ ≤ ∨µα ⇒ µ =

∨
µα. Q.E.D.

Both definitions of fuzzy connectivity presented above provide a natural extension of

the notion of topological connectivity, as the next result shows. The proof of this result is

straightforward.

3.3.10 Proposition. Let (E,G) be a topological space. Then,

(E,G) is connected ⇔ (E,G) is fully connected ⇔ (E,G) is level connected.

In addition,

(E,G) is disconnected ⇔ (E,G) is fully disconnected ⇔ (E,G) is level disconnected.

�

The relationship between the two previous definitions of fuzzy connectivity is given by

the following proposition.
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3.3.11 Proposition. Let (E,∆) be a T -fuzzy topological space. Then,

(E,∆) is level connected ⇒ (E,∆) is fully connected. (3.10)

�

Proof. This is a direct consequence of Proposition 3.3.2, by setting τ = I. Q.E.D.

Note that the fuzzy topological space discussed in the counterexample after Proposition

3.3.2 is fully connected, but not level connected. This shows that the converse to (3.10) is

not in general true.

The next result shows that, in the case of IR-fuzzy topological spaces based on topology

pyramids, the implication in Proposition 3.3.11 becomes an equivalence.

3.3.12 Proposition. Let P = {Gτ | τ ∈ IR � {∞}} be a topology pyramid on E, and

let (E,∆(P)) be the associated IR-fuzzy topological space, where ∆(P) is given by (2.49).

Then,

(E,∆(P)) is level connected ⇔ (E,∆(P)) is fully connected. (3.11)
�

Proof. The direct implication follows from Proposition 3.3.11. To show the reverse impli-

cation, note that, as a consequence of Proposition 3.3.3, the base topological space (E,G−∞)

is connected. But it can be easily verified that Gτ ⊆ G−∞ implies that the space (E,Gτ )
must also be connected, for all τ ∈ IR � {∞}. Hence, (E,∆(P)) is level connected. Q.E.D.

3.4 Fuzzy Graph-Theoretic Connectivity

Fuzzy topological connectivity retains the undesirable aspect of ordinary topological

connectivity of not being adequate for dealing with discrete spaces. In this case, fuzzy

connectivity can be best studied in the framework of T -fuzzy graphs. The following is the

T -fuzzy analog of the original definition of a fuzzy graph [67, 95].

3.4.1 Definition. A T -fuzzy graph is a pair G = (V, σ), where V is the set of vertices and

σ is a T -fuzzy set on V × V , called the fuzzy edge set of G. "

When V = ∅, the corresponding graph is a null T -fuzzy graph. If σ is a crisp subset of

V ×V , then G is a graph in the sense of Definition 3.2.1, so that ordinary graphs are special
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cases of T -fuzzy graphs. Note that a T -fuzzy graph can be thought of as a weighted graph;

i.e., an ordinary graph with weights assigned to the edges.

The fuzzy edge set σ defines a binary fuzzy relation on V , a notion that dates back

to Zadeh’s original paper on fuzzy sets [96]. For two vertices v, w ∈ V , the quantity

σ(v, w) indicates the degree of adjacency, or strength of connection, between v and w. In

what follows, we assume that the edge relation σ is reflexive (i.e., σ(v, v) = I, for v ∈ V )

and symmetric (i.e., σ(v, w) = σ(w, v), for v, w ∈ V ). The symmetry requirement implies

that the T -fuzzy graph G is undirected.

With each T -fuzzy graphG, we can associate a family of ordinary graphsGτ = (V,Xτ (σ)),

for τ ∈ T � {O}, where Xτ (σ) = {(v, w) ∈ V × V | σ(v, w) ≥ τ}. The graphs Gτ are called

the τ -level graphs associated with G. It is clear that, if τ1 ≥ τ2, then Gτ1 is a subgraph of

Gτ2 . It will become clear below that the τ -level graphs of a T -fuzzy graph play, to some

extent, the same role as the τ -level topological spaces of a fuzzy topological space.

The following is the fuzzy analog of the concept of an induced subgraph (see Defini-

tion 3.2.3).

3.4.2 Definition. Let G = (V, σ) be a T -fuzzy graph, and let U ⊆ V be a subset of the

vertices of G. The T -fuzzy graph G[U ] = (U, σ′), where

σ′(v, w) =

 σ(v, w), if v, w ∈ U
O, otherwise

, (3.12)

is called the T -fuzzy subgraph induced by U . "

Note that, if G is an ordinary graph (i.e., if σ is a ordinary subset of V × V ), then the

previous definition agrees with Definition 3.2.3.

Given a T -fuzzy graph G = (V, σ), a fuzzy path in G, between two given vertices v1, vK ∈
V , is a sequence Π = {v1, v2, . . . , vK}, where vi ∈ V , such that σ(vi, vi+1) > O, for i =

1, 2, . . . ,K − 1. Clearly, a path in an ordinary graph is a special case of a fuzzy path. The

strength s(Π) of a fuzzy path Π = {v1, v2, . . . , vK} is defined as s(Π) =
∧K−1
i=1 σ(vi, vi+1).

The set of all fuzzy paths between two vertices v, w ∈ V is denoted by Πvw.

3.4.3 Definition. Let G = (V, σ) be a T -fuzzy graph. The degree of connectivity c(v, w)

between two vertices v, w ∈ V is defined by

c(v, w) =
∨

Π∈Πvw
s(Π) =

∨
Π∈Πvw

∧K−1
i=1 {σ(vi, vi+1) | vi, vi+1 ∈ Π}. (3.13)

"
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To simplify analysis, we assume from this point on that the vertex set V is finite and that

T is a chain. In this case, the strength of a path corresponds to the “weakest link” between

any vertices in the path, and the degree of connectivity between two vertices corresponds

to the strength of the “best path” between the vertices, since all the suprema and infima

involved are achieved.

The following may be considered to be the discrete analog of fuzzy topological

τ -connectivity (see Definition 3.3.1). The definition below coincides with the notion of

strong τ -connectivity, which appears in [95].

3.4.4 Definition. A T -fuzzy graph G = (V, σ) is said to be τ -connected, for τ ∈ T � {O},

if c(v, w) ≥ τ , for all v, w ∈ V . If G is I-connected, it is said to be fully connected, whereas,

if G is not τ -connected, for any τ ∈ T � {O}, it is said to be fully disconnected. "

In other words, a T -fuzzy graph is τ -connected if the degree of connectivity between

any pair of vertices is at least τ or, equivalently, if there exists a fuzzy path of strength at

least τ between any pair of vertices. Note that a T -fuzzy graph is fully connected if and

only if it is an ordinary connected graph. Note also that τ -connectivity defines a degree of

connectivity for T -fuzzy graphs, in the sense that, if τ1 ≥ τ2, then τ1-connectivity implies

τ2-connectivity.

The following result characterizes τ -connectivity of a T -fuzzy graph in terms of its τ -level

graphs.

3.4.5 Proposition. Let G = (V, σ) be a T -fuzzy graph. For τ ∈ T � {O},

G = (V, σ) is τ -connected ⇔ Gτ = (V,Xτ (σ)) is connected. (3.14)

�

Proof. Let v, w be any two given vertices in V . As we argued before, G is τ -connected if

and only if there exists a fuzzy path Π = {v = v1, v2, . . . , vK = w} such that s(Π) ≥ τ ; i.e.,

such that σ(vi, vi+1) ≥ τ , for i = 1, 2, . . . ,K − 1. But this is true if and only if Π is a path

in Gτ = (V,Xτ (σ)); i.e., if and only if Gτ is connected. Q.E.D.

The definition of τ -connectivity can be applied to subsets of V via the notion of induced

T -fuzzy subgraphs.
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3.4.6 Definition. Let G = (V, σ) be a T -fuzzy graph. For τ ∈ T � {O}, a subset

U ⊆ V of vertices of G is said to be τ -connected if the induced T -fuzzy subgraph G[U ]

is τ -connected. "

Note that the empty set and the points are (voidly) τ -connected, for all τ ∈ T � {O}.

The maximal τ -connected subsets of U are called the τ -connected components of U (or the

τ -clusters of U , in the terminology of [95]).

The next result is the “subspace” version of Proposition 3.4.5.

3.4.7 Proposition. Let G = (V, σ) be a T -fuzzy graph. For a given subset U ⊆ V and

τ ∈ T � {O},

U is τ -connected in G = (V, σ) ⇔ U is connected in Gτ = (V,Xτ (σ)). (3.15)

�

Proof. Let v, w be any two given vertices in U . The subset U is τ -connected in G = (V, σ)

if and only if there is a path Π = {v = v1, v2, . . . , vK = w} ⊆ U such that s(Π) ≥ τ ; i.e.,

such that σ(vi, vi+1) ≥ τ , for i = 1, 2, . . . ,K − 1. But this is true if and only if Π is a path

in U according to Gτ = (V,Xτ (σ)); i.e., if and only if U is connected in Gτ . Q.E.D.

The following result is the fuzzy analog of Proposition 3.2.5 (it follows directly from

Propositions 3.2.5 and 3.4.7).

3.4.8 Proposition. Let G = (V, σ) be a T -fuzzy graph. For τ ∈ T � {O}:

(a) If subsets {Uα} of V are τ -connected and
⋂
Uα �= ∅, then

⋃
Uα is τ -connected.

(b) The τ -connected components {Uα} of a subset U of V are disjoint and U =
⋃
Uα. �

The usefulness of τ -connectivity of T -fuzzy graphs in image analysis applications has

been demonstrated, for instance, in [95], where it was used for hierarchical cluster analysis,

or in [86], which proposes a scheme for defining fuzzy objects in grayscale images that

corresponds to τ -connectivity of a T -fuzzy graph, where the fuzzy edge relation σ(v, w) is

defined in terms of spatial adjacency and homogeneity of the grayscale values at v, w.

We now present a different type of fuzzy graph-theoretical connectivity, which has been

proposed by A. Rosenfeld in [68–70]. This may be thought of as the discrete analog of the

notion of fuzzy topological level connectivity (see Definition 3.3.7).
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Consider the lattice of grayscale images L = Fun(E, T ), where E is a finite subset of ZZn

and T is a finite chain (e.g., T = {0, 1, . . . , R− 1}, where R ≥ 2 is a finite integer). We also

assume an underlying graph G = (E,L), which provides a connectivity on the space E. We

have the following definition.

3.4.9 Definition. For each image f ∈ Fun(E, T ), we define the topographic T -fuzzy graph
Gf = (E, σf ), where

σf (v, w) =

 f(v) ∧ f(w), if v and w are adjacent

O, otherwise
, (3.16)

for v, w ∈ E. "

It is easy to see that the degree of connectivity between two points v, w in E, according

to Gf , is given by

cf (v, w) =
∨

Π∈Πvw

∧K−1
i=1 {f(vi) | vi ∈ Π}, (3.17)

for v, w ∈ E, where Πvw denotes the set of paths from v to w, according to the underlying

graph G = (E,L). Hence, the degree of connectivity between v and w is given by the least

grayscale value along the “best” path from v to w. It follows that cf (v, w) ≤ f(v) ∧ f(w),

for all v, w ∈ E. If this upper bound is reached (i.e., if cf (v, w) = f(v)∧ f(w)), then we say

that v is topographically connected to w [67]. Clearly, v and w are topographically connected

if and only if there is a path from v to w along which the value of f never “dips” below the

values of both f(v) and f(w).

The following definition introduces an interesting notion of connectivity for grayscale

images based on the idea of topographic connectivity [69, 70].

3.4.10 Definition. An image f ∈ Fun(E, T ) is said to be topographically connected if every

pair of points v, w ∈ E is topographically connected. "

Note that the zero image and the pulses in Fun(E, T ) are topographically connected.

The topographically connected components of an image f ∈ Fun(E, T ) are the maximal

topographically connected images below f .

The following result characterizes topographic connectivity of an image f ∈ Fun(E, T )

in terms of the τ -level graphs of the associated topographic T -fuzzy graph Gf .
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3.4.11 Proposition. Let f ∈ Fun(E, T ) and Gf be the associated topographic T -fuzzy

graph, given by Definition 3.4.9. The image f is topographically connected if and only if

Xτ (f) is connected in the τ -level graph Gfτ = (E,Xτ (σf )), for all τ ∈ T � {O}. �

Proof. “⇒”: Let τ ∈ T � {O} and U = Xτ (f). To show that U is connected in Gfτ =

(E,Xτ (σf )), we need to show that there is a path in Gfτ [U ] between any two vertices

v, w ∈ U . It is easy to see that this is equivalent to finding a path Π = {v = v1, v2, . . . , vK =

w} ∈ Πv1vK such that f(vi) ≥ τ , for i = 1, 2, . . . ,K. Suppose that there is no such

path. Then, it easily follows from (3.17) that cf (v, w) < τ . But f(v), f(w) ≥ τ , so that

cf (v, w) < f(v) ∧ f(w), contradicting the hypothesis that v and w are topographically

connected.

“⇐”: Let v, w ∈ E. We need to show that v and w are topographically connected; i.e.,

that cf (v, w) = f(v)∧f(w). If f(v) = O or f(w) = O, then clearly cf (v, w) = O, and we are

done. Otherwise, let τ = f(v) ∧ f(w) �= O. We have that v, w ∈ Xτ (f), which is connected

in Gfτ = (E,Xτ (σf )). It follows that there is a path Π = {v = v1, v2, . . . , vK = w} ∈ Πv1vK
such that f(vi) ≥ τ , for i = 1, 2, . . . ,K. Hence, cf (v, w) ≥ τ . But, as we argued before,

cf (v, w) ≤ τ . It then follows that cf (v, w) = τ = f(v) ∧ f(w), as required. Q.E.D.

By comparing this result with Definition 3.3.7, we see that the fuzzy graph-theoretic

notion of topographic connectivity is indeed the discrete analog of the fuzzy topological

notion of level connectivity. In particular, the example depicted in Fig. 3.5 can be easily

discretized, which leads to an example of 1-D topographic connectivity.

Drawing on this parallel, we have the following definition (compare with Definition 3.3.8).

3.4.12 Definition. Given a family {fα} of images in Fun(E, T ), we say that {fα} is over-

lapping if
⋂
α{Xτ (fα) | Xτ (fα) �= ∅} �= ∅, for every τ ∈ T � {O}. "

We have the following result.

3.4.13 Proposition.

(a) If {fα} is a family of overlapping topographically connected images in Fun(E, T ), then∨
fα is topographically connected.

(b) The topographic connected components {fα} of an image f ∈ Fun(E, T ) are non-

overlapping and f =
∨
fα. �
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Proof. (a): Let τ ∈ T � {O}. From the assumption that T is finite, we have that

Xτ (
∨
fα) =

⋃
αXτ (fα). From Proposition 3.4.11, Xτ (fα) is connected in Gfατ , for each α.

Since Gfατ is clearly a subgraph of G∨fα
τ , it follows that Xτ (fα) is connected in G∨fα

τ , for

each α. Since
⋂
α{Xτ (fα) | Xτ (fα) �= ∅} �= ∅, it follows that Xτ (

∨
fα) =

⋃
αXτ (fα) =⋃

α{Xτ (fα) | Xτ (fα) �= ∅} is connected in G∨fα
τ . Since this holds for each τ ∈ T � {O}, it

follows from Proposition 3.4.11 that
∨
fα is topographically connected.

(b): If f1 and f2 are two overlapping topographically connected components of f then,

from part (a), f1 ∨ f2 is topographically connected, so that f1 = f2, by the maximality of

f1, f2. Hence, all topographically connected components of f are non-overlapping. Now,

for a pulse δv,t ≤ f , either δv,t is a topographically connected component of f , or δv,t ≤ fα,

for some topographically connected component fα of f . Hence, f =
∨
δv,t≤f δv,t ≤

∨
fα ⇒

f =
∨
fα. Q.E.D.

The usefulness of topographic connectivity in image analysis applications has been

demonstrated, for instance, in [21], where the concept of “intensity connectivity” is de-

fined based on the notion of topographic connectivity.





Chapter 4

Connectivity on Complete Lattices

As we mentioned in Chapter 1, the standard notions of connectivity, such as topological

connectivity and graph-theoretic connectivity, are incompatible. For example, although

there is a topology on ZZ2 for which the topologically connected sets are the 4-adjacency

connected sets in ZZ2, it can be shown that there exists no topology on ZZ2 that yields

8-adjacency connectivity. Furthermore, topological connectivity on Hausdorff spaces, such

as the Euclidean space, cannot arise from graph-theoretic connectivity, since every pair of

points is disconnected by definition. See [66] and the references therein for a more detailed

discussion on these issues.

This state of affairs motivated G. Matheron and J. Serra to propose an axiomatic ap-

proach to binary connectivity, known as the theory of connectivity classes, which includes

and unifies traditional concepts of connectivity, and allows the study of many interest-

ing connectivity examples that are not covered by the classical definitions [77]. Recently,

J. Serra showed how to extend the theory of connectivity classes to complete lattices, in a

way that is consistent with the binary theory [78–80].

This chapter is organized as follows. Connectivity classes in complete lattices are dis-

cussed in Section 4.1, when we also study properties of connectivity openings and the recon-

struction operator. In Section 4.2, we propose connectivity classes defined on ψ-invariant

lattices, which include the classical notion of graph-theoretic k-connectivity and a new ex-

ample of grayscale connectivity, the so-called flat grayscale connectivity. In Section 4.3,

we study second-generation connectivities, including clustering-based connectivities and

contraction-based connectivities. Finally, in Section 4.4, we investigate hyperconnectivity.
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4.1 Fundamental Notions

In this section, we study the axiomatic formulation of connectivity classes in complete

lattices, first proposed by G. Matheron and J. Serra. We also study the notions of con-

nectivity openings and reconstruction, which are useful operators associated with a con-

nectivity class. We present a classic result according to which a connectivity class can be

equivalently specified in terms of connectivity openings, and provide a few novel results

on semi-continuity properties of connectivity openings. Another original contribution is a

result that shows that, in the case of infinite ∨-distributive lattices, a connectivity class can

be equivalently specified in terms of a reconstruction operator.

4.1.1 Connectivity Classes

G. Matheron and J. Serra’s original definition of a connectivity class [77] is given below.

4.1.1 Definition. Let E be a set. A family C ⊆ P(E) is called a connectivity class in P(E)

if the following conditions are satisfied:

(i) ∅ ∈ C,

(ii) {v} ∈ C, for all v ∈ E,

(iii) for a family {Cα} in C such that
⋂
Cα �= ∅, we have that

⋃
Cα ∈ C.

The family C generates a connectivity on P(E), and the sets in C are said to be connected. "

Axioms (i) and (ii) in Definition 4.1.1 require that the empty set and the points be

always connected, whereas axiom (iii) requires that the union of intersecting connected

sets be connected. This may be considered to be a minimal set of desirable requirements

for connectivity. In particular, it is easy to see that these requirements imply that an object

is partitioned by its connected components, which is a fundamental property of connectivity.

Definition 4.1.1 is applicable only to binary images. More recently, however, J. Serra

extended this axiomatization to the general case of complete lattices [78–80]. In this dis-

sertation, we consider the “canonical markers” axiomatization of connectivity classes, as

defined in [79, 80]. According to this framework, one chooses a fixed sup-generating family

in the lattice of interest to play the same role as the points in Definition 4.1.1. We have the

following definition.
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4.1.2 Definition. Let L be a lattice with a sup-generating family S. A family C ⊆ L is

called a connectivity class in L if the following conditions are satisfied:

(i) O ∈ C,

(ii) S ⊆ C,

(iii) for a family {Cα} in C such that
∧
Cα �= O, we have that

∨
Cα ∈ C.

The family C generates a connectivity on L, and the elements in C are said to be connected. "

Note that, when L = P(E) with the points as sup-generators, the definition above

coincides with Definition 4.1.1.

It will be useful to make some specializations. Following the terminology in [35], we

say that a connectivity class is strong if the universal element I of L is connected; i.e.,

if I ∈ C. In the case of the set lattice P(E), this means that E ∈ C. In addition, if

E = IRn or E = ZZn, we say that a connectivity class C in P(E) is translation-invariant if

A ∈ C ⇔ Ah ∈ C, for all h ∈ E.

Below, we give a few examples of connectivity classes (see also [35, 66, 79, 80]). Additional

examples will be studied in Sections 4.2 and 4.3.

4.1.3 Example.

(a) (Minimal connectivity class). Consider a lattice L with sup-generating family S.

Suppose that the sup-generators in S satisfy the condition in axiom (iii) of Defini-

tion 4.1.2. Then, the family Cmin = {O} ∪ S is a connectivity class. In this case, only

the least element and the sup-generators are connected.

(b) (Maximal connectivity class). Given a lattice L, Cmax = L is a connectivity class. In

this case, every element in L is connected. This connectivity class is strong.

(c) (Topological connectivity). Let (E,G) be a topological space, and let L = P(E) with

the points as sup-generators. It follows from the results in Section 3.1 that

C = {A ∈ P(E) | A is connected in (E,G)}, (4.1)

C′ = {A ∈ P(E) | A is path-connected in (E,G)} (4.2)

are connectivity classes in P(E), such that C′ ⊆ C. Note that, in the case of the

Euclidean space (IRn,Ge), both C and C′ are strong and translation-invariant.
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(d) (Graph-theoretic connectivity). Let G = (V,L) be a graph, and let L = P(V ) with

the points as sup-generators. It follows easily from the results in Section 3.2 that

C = {U ∈ P(V ) | U is connected in G} (4.3)

is a connectivity class in P(V ). For example, with V = ZZ2, this includes the case of

4- and 8-adjacency connectivities discussed in Section 3.2, in which case C is strong

and translation-invariant.

(e) (Fuzzy topological τ -connectivity). Let (E,∆) be a T -fuzzy topological space, and let

L = P(E) with the points as sup-generators. It follows easily from the results in

Section 3.3 that

Cτ = {A ∈ P(E) | A is τ -connected in (E,∆)} (4.4)

is a connectivity class in P(E), for each τ ∈ T � {O}. Note that the connectivity

class C in (4.1) is a special case of the present example.

(f) (Fuzzy graph-theoretic τ -connectivity). Let G = (V, σ) be a T -fuzzy graph, where V

is finite and T is a chain, and let L = P(V ) with the points as sup-generators. It

follows easily from the results in Section 3.4 that

Cτ = {U ∈ P(V ) | U is τ -connected in G} (4.5)

is a connectivity class in P(V ), for each τ ∈ T � {O}. Note that example (d) is a

special case of the present example.

(g) (“Polygonal-line” connectivity). Consider the lattice L = P(IRn) with the points as

sup-generators. The family of all subsets C of IRn such that any two points of C can

be joined by a polygonal line that lies entirely in C is clearly a connectivity class in

P(IRn). In this case, disconnected objects are subsets of IRn that have thin curved

parts. This connectivity class is strong and translation-invariant. See Fig. 4.1 for an

illustration. Note that the family of all subsets C of IRn such that any two points of C

can be joined by a straight line that lies entirely in C (i.e., C is convex) does not form

a connectivity class, since union of two intersecting convex sets may not be convex.

(h) (“Support” connectivity). Consider the function lattice L = Fun(E, T ), with the pulses

as sup-generators. Assume that P(E) is furnished with a connectivity class CE . Then,
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Figure 4.1: An illustration of “polygonal-line” connectivity.

a connectivity class C in Fun(E, T ) can be defined as the set of all functions that have

connected support on E; i.e.,

C = {f ∈ Fun(E, T ) | Ω(f) ∈ CE}, (4.6)

where Ω(f) = {v ∈ E | f(v) > 0} (here, “0” stands for the least element of lattice T ).

Clearly, C is strong if CE is. ♦

The notions of graph-theoretic k-connectivity, fuzzy topological level connectivity and

fuzzy graph-theoretic topographic connectivity, discussed in Sections 3.2, 3.3 and 3.4, re-

spectively, do not in general lead, in a straightforward way, to connectivity classes. This

is mainly because the overlapping criterion in those cases cannot be expressed in terms of

a simple pointwise infimum operation. In Section 4.4, these are shown to fit naturally in

the framework of hyperconnectivity. Nevertheless, we show in Section 4.2 that, by defining

suitable lattices, graph-theoretic k-connectivity can be formulated as a connectivity class.

Example 4.1.3(g) appears in [35]. The “support” connectivity of Example 4.1.3(h) is not

very useful in practice, since, according to this connectivity, any image with strictly nonzero

values will be connected, assuming that CE is a strong connectivity class. This leads to a

single connected component for the whole image, even if the image is composed of objects

that should be viewed as separate connected components. As a matter of fact, the function

lattice Fun(E, T ) is not really adequate for generating useful connectivity classes. The main

difficulty lies in finding a family C ⊆ Fun(E, T ) such that axiom (iii) of Definition 4.1.2 is

satisfied. A solution to this problem is to define suitable lattices that allow the construction

of interesting connectivity classes for functions. In Section 4.2.4, we use this approach to

generate a potentially useful example of connectivity for grayscale images.

Let us now denote by Ccl(L) the set of all connectivity classes in a lattice L, with a

fixed sup-generating family. It was shown in [79, Proposition 4] that Ccl(L) is a complete
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lattice under the usual inclusion partial order relation for families of L. The following is a

more detailed version of that result.

4.1.4 Proposition. Let L be a lattice with a sup-generating family S.

(a) The operator φ on P(L), given by

φ(A) =
⋂

{C ∈ Ccl(L) | C ⊇ A}, A ∈ P(L), (4.7)

is a closing on P(L), with invariance domain Inv(φ) = Ccl(L).

(b) Ccl(L) is an underlattice of P(L), with infimum
⋂ Cα and supremum φ(

⋃ Cα). �

Proof. (a): Obviously, φ is increasing and extensive. To show that φ is idempotent, it

suffices to show that φ(A) ∈ Ccl(L), for all A ∈ P(L). Let C = {C ∈ Ccl(L) | C ⊇ A}.

Since {O} ∈ C and S ⊆ C, for all C ∈ C, we have that {O} ∈ φ(A) and S ⊆ φ(A),

which shows axioms (i) and (ii) of connectivity classes. To show axiom (iii), consider

a family {Aα} ⊆ φ(A) such that
∧
Aα �= O. It follows from (4.7) that, for all C ∈ C,

{Aα} ⊆ C ⇒ ∨Aα ∈ C, since C is a connectivity class. Therefore,
∨
Aα ∈ φ(A). Hence, φ

is a closing. Now, if A ∈ Ccl(L), it is clear from (4.7) that φ(A) = A. Conversely, φ(A) = A
implies that A ∈ Ccl(L), since we have shown that φ(A) ∈ Ccl(L), for all A ∈ P(L). Hence,

Inv(φ) = Ccl(L).

(b): This follows directly from (a) and Proposition 2.2.2(a). Q.E.D.

The closing φ(A) gives the smallest connectivity class in L that contains the family

A ∈ P(L). Note that, as a direct consequence of part (b) of the previous proposition, the

intersection of connectivity classes is a connectivity class as well.

4.1.2 Connectivity Openings

One of the most basic image analysis tasks that involves connectivity is extracting a

connected component from an image marked with a marker. In the context of a complete

lattice L with sup-generating family S, it is natural to use as markers the sup-generators

in S. Given a sup-generator x ∈ S, one would like to define an operator γx(A) that extracts

the connected component of A marked by x.

It turns out that connectivity classes are intimately related to such operators. Given a

connectivity class C in L, let

γx(A) =
∨

{C ∈ C | x ≤ C ≤ A}, A ∈ L, (4.8)
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for every x ∈ S. This is known as the connectivity opening associated with the connectivity

class C (it can be easily verified that γx is increasing, anti-extensive, and idempotent; hence,

it is an opening). Note that axiom (iii) of connectivity classes implies that γx(A) ∈ C, for

all A ∈ L and x ∈ S. Moreover, it is obvious that C ∈ C ⇒ γx(C) = C, for x ≤ C. It easily

follows from these observations that

C =
⋃
x∈S

Inv(γx) =
⋃
x∈S

{γx(A) | A ∈ L}. (4.9)

Below, we show that the connectivity opening γx(A) corresponds to the connected com-

ponent of A “marked” by x. First, we define connected components in the context of

complete lattices.

4.1.5 Definition. Let L be a lattice, furnished with a connectivity class C, and let A ∈ L.

A connected component, or grain, of A is a nonzero element C ∈ C such that: (a) C ≤ A,

and (b) there is no C ′ ∈ C such that C ≤ C ′ ≤ A. "

If C is a grain of A, we write C �A. We have the following result.

4.1.6 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C. Given A ∈ L and a sup-generator x ≤ A, γx(A) is the connected

component of A marked by x; i.e., x ≤ γx(A) �A. �

Proof. From the definition of connectivity opening, we have that x ≤ A⇒ x ≤ γx(A). In

addition, x ≤ A ⇒ x ≤ γx(A) ⇒ γx(A) �= O and, as argued previously, γx(A) ∈ C. Now,

note that γx(A) ≤ A, since γx is anti-extensive, so that condition (a) in Definition 4.1.5

is satisfied. To show condition (b), let C ′ ∈ C be such that γx(A) ≤ C ′ ≤ A. From the

definition of connectivity openings, it is clear that x ≤ A implies that x ≤ γx(A), which

implies x ≤ C ′ ⇒ C ′ ≤ γx(A) ⇒ C ′ = γx(A). Hence, x ≤ γx(A) �A, as required. Q.E.D.

On the other hand, for any connected component C � A, we have that C = γx(A),

for a sup-generator x ≤ C. Hence, the connectivity openings completely characterize the

connected components of A. Fig. 4.2 illustrates the connectivity opening in the case of lattice

P(IR2), with the points as sup-generators, where the Euclidean topological connectivity is

assumed.

One of the main applications of connectivity is partitioning an object into its connected

components. Below, we show that connectivity openings can be used to generate such
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(a) (b)

A �x A( )

x

Figure 4.2: (a) A subset A of the 2-D Euclidean space with three connected components.
(b) Set γx(A) is the connected component of A marked by x. The Euclidean topological
connectivity is assumed.

partitions. First, however, we need to formally define the concept of a partition. Recall

that S(A) = S ∩ M∗(A) = {x ∈ S | x ≤ A}.

4.1.7 Definition. Let L be a lattice with sup-generating family S. A partition of an

element A ∈ L is a mapping pA: S(A) → L, such that:

(i) x ≤ pA(x) ≤ A, for every x ∈ S(A),

(ii) pA(x) = pA(y) or pA(x)
∧
pA(y) = O, for every x, y ∈ S(A).

Each pA(x) is called a zone of the partition pA of A. We say that pA is connected (with

respect to a given connectivity class C) if all zones are connected; i.e., if pA(x) ∈ C, for

every x ∈ S(A). "

Note that

A =
∨

x∈S(A)

pA(x), (4.10)

as a direct consequence of item (i) in Definition 4.1.7. Note also that, if L = P(E), with

the points as sup-generators, then a partition, in the sense of Definition 4.1.7, corresponds

to the usual notion of set partition.

For any two partitions pA and p′A, we say that p′A is finer than pA if p′A(x) ≤ pA(x), for

each x ∈ S(A); i.e., each zone of p′A is contained in one of the zones of pA (we also say that

pA is coarser than p′A). See Fig. 4.3 for an illustration.
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pA

A

�pA

A

Figure 4.3: The partition p′A is finer than pA, since each zone of p′A is contained in one of
the zones of pA.

It is easy to see that the relationship “finer than” defines a partial order relation 2 on the

family PA of all partitions of A. As a matter of fact, PA is a complete lattice: the infimum

3 is simply (3 p iA)(x) =
∧
p iA(x), whereas the supremum 4 is given by 4 p iA = 3{pA | pA 5

p iA, i ∈ I}. In other words, the zones of the infimum are obtained by the infima of the zones

of the individual partitions, whereas the supremum is the smallest partition that is coarser

than each of the individual partitions.

In the following, we show that the connected components of an element A ∈ L provide

a connected partition of A, which is the coarsest possible connected partition; i.e., it gives

the fewest possible number of connected zones.

4.1.8 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C, and let {γx | x ∈ S} be the family of connectivity openings associated

with C. For an element A ∈ L, the mapping cA: S(A) → L, given by

cA(x) = γx(A), x ∈ S(A), (4.11)

defines a connected partition of A. Moreover,

cA =
⊔ {c′A | c′A is a connected partition of A}; (4.12)

that is, cA provides the coarsest possible connected partition of A. �

Proof. That cA(x) is a connected partition of A follows directly from the definition and

properties of the connectivity opening γx. To show that cA is the coarsest possible connected
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Figure 4.4: A subset A of the 2-D Euclidean space with three connected components A1, A2,
A3. The PCC is given by cA(xi) = γxi(A) = Ai, for i = 1, 2, 3. The Euclidean topological
connectivity is assumed.

partition of A, let c′A be any connected partition of A. For x ∈ S(A), we have that x ≤ cA(x)

and x ≤ c′A(x), hence cA(x)
∧
c′A(x) ≥ x �= O, which implies that cA(x)

∨
c′A(x) ∈ C, by

axiom (iii) of connectivity classes. However, from the definition of connectivity openings,

x ≤ cA(x)
∨
c′A(x) ∈ C ⇒ cA(x)

∨
c′A(x) ≤ γx(A) = cA(x) ⇒ c′A(x) ≤ cA(x). Since this

argument holds for all x ∈ S(A), we have shown that cA is coarser than c′A. Q.E.D.

The partition cA is referred to as the partition of connected components (PCC) of A. In

the binary case (e.g., when L = P(E)), it will be convenient to consider the PCC cA as a

function from A into L; i.e., cA(x) = γx(A), for x ∈ A.

A straightforward corollary to Proposition 4.1.8 is that any element A of a lattice can

be recovered from its PCC, since

A =
∨

x∈S(A)

cA(x) =
∨

x∈S(A)

γx(A). (4.13)

We have mentioned before that, in the binary case, we fall back into the usual notion

of set partition. This is illustrated in Fig. 4.4, where E = IR2 and C is the Euclidean

topological connectivity. The three zones of the PCC correspond to cA(xi) = γxi(A) = Ai,

for i = 1, 2, 3.

As mentioned at the beginning of this section, connectivity classes and connectivity

openings are intimately related: connectivity openings characterize, in a unique fashion,

the connectivity classes with which they are associated. This is established by the following

theorem (recall that Ccl(L) denotes the set of all connectivity classes in L).



4.1 Fundamental Notions 71

4.1.9 Theorem. Let L be a lattice with sup-generating family S. For a connectivity class

C ∈ Ccl(L), let {γx | x ∈ S} be the connectivity openings associated with C, given by (4.8).

Then,

(i) γx(x) = x, for every x ∈ S,

(ii) x � A⇒ γx(A) = O,

(iii) γx(A)
∧
γy(A) �= O ⇒ γx(A) = γy(A) (i.e., γx(A) and γy(A) are either equal or

disjoint).

Conversely, let Cop(L) denote the set of all families of openings {γx | x ∈ S} that satisfy

properties (i)–(iii) above. For {γx | x ∈ S} ∈ Cop(L), let C be given by (4.9). Then, C
is a connectivity class in L; i.e., C ∈ Ccl(L). Moreover, its family of connectivity openings

coincides with {γx | x ∈ S}. Hence, (4.8) and (4.9) establish a bijection between Ccl(L)

and Cop(L). �

Proof. Clearly, properties (i) and (ii) are a direct consequence of (4.8). To show property

(iii), recall that γx(A), γy(A) ∈ C and γx(A), γy(A) ≤ A. Therefore, by axiom (iii) of

connectivity classes, we have that γx(A)
∧
γy(A) �= O ⇒ C = γx(A)

∨
γy(A) ∈ C, with

C ≤ A. However, since γx(A)
∧
γy(A) �= O, we have γx(A) �= O, which implies that x ≤ A.

But x ≤ A ⇒ x = γx(x) ≤ γx(A) ≤ C ⇒ C ≤ γx(A) ⇒ γy(A) ≤ γx(A). The reverse

inequality γx(A) ≤ γy(A) can be shown analogously; hence, γx(A) = γy(A).

Now, assume that {γx | x ∈ S} ∈ Cop(L). We show that C, given by (4.9), satisfies

axioms (i)–(iii) of a connectivity class. Clearly, axiom (i) follows from the fact that O ∈
Inv(γx). Axiom (ii) follows from property (i): γx(x) = x ⇒ x ∈ Inv(γx) ⇒ x ∈ C,

for all x ∈ S. To show axiom (iii), consider a family {Cα} of elements in C such that∧
Cα �= O. From (4.9), we have that Cα ∈ Inv(γxα) ⇒ Cα = γxα(Cα), for some xα ∈ S.

Now, since
∧
Cα �= O, we can pick x ∈ S, with x ≤ ∧Cα ≤ Cα. On one hand, this

implies that x ≤ γxα(Cα), and on the other hand that x = γx(x) ≤ γx(Cα). Therefore,

γx(Cα)
∧
γxα(Cα) ≥ x �= O. From property (iii), it follows that γx(Cα) = γxα(Cα) =

Cα ⇒ Cα ∈ Inv(γx), for all α; therefore,
∨
Cα ∈ Inv(γx) ⇒ ∨

Cα ∈ C. Hence, C ∈
Ccl(L). Finally, we show that γ′

x(A) =
∨{C ∈ C | x ≤ C ≤ A} = γx(A), for all A ∈ L.

If x �≤ A, then clearly γ′
x(A) = γx(A) = O. So, let x ≤ A and define C(x,A) = {C ∈ C |

x ≤ C ≤ A}. Note that γ′
x(A) =

∨ C(x,A). If C ∈ C(x,A), we have C ∈ Inv(γy), for

some y ∈ S, so that γy(C) = C ≥ x. On the other hand, C ≥ x ⇒ γx(C) ≥ γx(x) = x.



72 Connectivity on Complete Lattices

Hence, γx(C)
∧
γy(C) �= O, so that, from property (iii), we have γx(C) = γy(C) = C. But

C ≤ A, thus C = γx(C) ≤ γx(A), for all C ∈ C(x,A), so that γ′
x(A) ≤ γx(A). To show

the reverse inequality, note that x ≤ γx(A) ≤ A, and that γx(A) ∈ Inv(γx) ⇒ γx(A) ∈ C.

Hence, γx(A) ∈ C(x,A) ⇒ γx(A) ≤ γ′
x(A). Q.E.D.

In a slightly different form, Theorem 4.1.9 was proved for the binary case in [77,

Thm. 2.8], and for the general lattice case in [79, Thm. 3]. This fundamental result shows

that connectivity on a lattice L can be equivalently specified by either a connectivity class

C ∈ Ccl(L), or by a family of connectivity openings {γx | x ∈ S} ∈ Cop(L).

We remark here that, since Ccl(L) is a lattice under the inclusion partial order relation

(see Proposition 4.1.4), the bijection between Ccl(L) and Cop(L) induces a partial order

on the set Cop(L), under which Cop(L) is also a lattice. These two lattices are of course

isomorphic.

We conclude this subsection with a study of semi-continuity properties of connectivity

openings. This material will be useful later, especially in Section 4.2.4 dealing with flat

grayscale connectivity classes.

First, we introduce the notion of compatible connectivity classes in P(E).

4.1.10 Definition. Let E be a topological space. A connectivity class C in P(E) is said

to be compatible with the topology on E, if

A ∈ C ⇒ A ∈ C. (4.14)

"

If no confusion is possible, we simply say that C is compatible. From Proposition 3.1.3(b),

it follows that the topological connectivity class in P(E) (i.e., the collection of all subsets

of E that are topologically connected, see Example 4.1.3(c)) is compatible. The following

result gives some useful properties of compatible connectivity classes. Recall that F(E) is

the lattice of closed subsets of E (see Example 2.1.2(b)).

4.1.11 Proposition. Let E be a Hausdorff space, and let Ĉ be a compatible connectivity

class in P(E), with the points as sup-generators. Let {γ̂x | x ∈ E} be the connectivity

openings associated with Ĉ.

(a) The family C = Ĉ ∩ F(E) is a connectivity class in F(E).
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(b) The restriction of the connectivity opening γ̂x to F(E) defines an operator γx on F(E),

for x ∈ E; i.e., A ∈ F(E) ⇒ γ̂x(A) ∈ F(E), for x ∈ E.

(c) The connectivity openings associated with C are given by the operators {γx | x ∈ E};

i.e., γx(A) = γ̂x(A), for A ∈ F(E), x ∈ E. �

Proof. (a): Clearly, the empty set is in C. In addition, the points in E are in Ĉ and are

closed, since E is Hausdorff; hence, they are also in C. Consider now a family {Cα} of

elements in C such that
∧
Cα =

⋂
Cα �= ∅. Note that {Cα} is in Ĉ, so that axiom (iii) of

connectivity classes implies that
⋃
Cα ∈ Ĉ. From (4.14), it follows that

∨
Cα =

⋃
Cα ∈ Ĉ.

Since
∨
Cα ∈ F(E), we have that

∨
Cα ∈ C, as required.

(b): Let A ∈ F(E). If A = ∅ or x �∈ A, the result is obvious, so let x ∈ A. From (4.14),

we have that γ̂x(A) ∈ Ĉ, since γ̂x(A) ∈ Ĉ. But x ∈ γ̂x(A) ⊆ γ̂x(A) ⇒ x ∈ γ̂x(A), so that

γ̂x(A) ⊆ γ̂x(A), from the definition of connectivity openings (4.8). Hence, γ̂x(A) = γ̂x(A)

and, therefore, γ̂x(A) ∈ F(E).

(c): We show that γx(A) = γ̂x(A), for A ∈ F(E) and x ∈ E. If A = ∅ or x �∈ A,

the result is obvious. Thus, let x ∈ A. From part (b), we have that γ̂x(A) ∈ F(E) ⇒
γ̂x(A) ∈ C, since γ̂x(A) ∈ Ĉ. From the definition of connectivity openings (4.8) and since

x ∈ γ̂x(A) ⊆ A, we have that γ̂x(A) ⊆ γx(A). But C ⊆ Ĉ, so that γx(A) ⊆ γ̂x(A) and,

therefore, γx(A) = γ̂x(A). Q.E.D.

The connectivity class C is the restriction of the connectivity class Ĉ to F(E). As an

example, if Ĉ is the topological connectivity class in P(E), which is compatible, then C is

the collection of all topologically connected closed subsets of E.

Recall now the definition of lattice upper semi-continuous (l.u.s.c.) operators in Sec-

tion 2.2.

4.1.12 Proposition. Let {γx | x ∈ S} be the connectivity openings associated with a

strong connectivity class C in L. For each x ∈ S, γx is l.u.s.c. on L if and only if C is such

that ∧
Q ∈ C, for every totally ordered subset Q ⊆ C. (4.15)

�

Proof. “⇒”: Let Q be a totally ordered subset of C. If Q = ∅, then
∧Q = I ∈ C, since C is

strong. If
∧Q = O, then

∧Q ∈ C. Otherwise, pick a sup-generator x ≤ ∧Q ⇒ x ≤ A, for
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all A ∈ Q. We have x ≤ A ⇒ γx(A) = A, for all A ∈ Q. Since γx is l.u.s.c., we have
∧Q =∧

A∈QA =
∧
A∈Q γx(A) = γx(

∧
A∈QA) = γx(

∧Q), so that
∧Q ∈ C, which shows (4.15).

“⇐”: Given x ∈ S, we need to show that γx(
∧K) =

∧
A∈K γx(A), for every totally

ordered subset K of L. If K = ∅, the result follows directly from the fact that γx(I) = I,

since C is a strong connectivity class. So let K be nonempty. If x �≤ ∧K, then x �≤ A, for

some A ∈ K, so that γx(A) = O ⇒ γx(
∧K) =

∧
A∈K γx(A) = O, which shows the desired

result. Hence, consider the case when x ≤ ∧K ⇒ x ≤ A, for all A ∈ K. For every C ∈ C
such that x ≤ C ≤ ∧K, we have that x ≤ C ≤ A ⇒ C ≤ γx(A), for all A ∈ K, which

implies C ≤ ∧A∈K γx(A). Hence, γx(
∧K) =

∨{C ∈ C | x ≤ C ≤ ∧K} ≤ ∧A∈K γx(A). On

the other hand, since γx is increasing, {γx(A) | A ∈ K} is a totally ordered family in C, which

implies
∧
A∈K γx(A) ∈ C, by virtue of (4.15). In addition, we have x ≤ γx(A), for all A ∈ K,

so that x ≤ ∧A∈K γx(A). Since γx(A) ≤ A ⇒ ∧A∈K γx(A) ≤ ∧K and γx is increasing, we

conclude that γx(
∧
A∈K γx(A)) =

∧
A∈K γx(A) ≤ γx(

∧K). Hence, γx(
∧K) =

∧
A∈K γx(A),

as required. Q.E.D.

A similar result for the connectivity openings to be lattice lower semi-continuous (l.l.s.c.)

is not possible. In fact, the dual of condition (4.15), namely,
∨Q ∈ C, for every totally

ordered subset Q ⊆ C, can be shown to hold trivially. However, connectivity openings are

not necessarily l.l.s.c., as the following example shows. Let L = F(IR2) be the lattice of

closed subsets of IR2 with the Euclidean topology and consider the connectivity class C of

topologically connected closed subsets of IR2 with connectivity openings {γx | x ∈ E} on

F(IR2). Let (An = [0, 1] × [1/n, 1])n≥1 be a sequence of sets in L, and let x = (0, 0). We

have that γx(
∨
n≥1An) = γx([0, 1] × [0, 1]) = [0, 1] × [0, 1], but

∨
n≥1 γx(An) =

∨
n≥1 ∅ = ∅,

so that γx is not l.l.s.c.

We can now show that the connectivity openings associated with the connectivity class

of topologically connected closed subsets in lattice F(E) are l.u.s.c., provided that we make

suitable assumptions about the topological space E.

4.1.13 Proposition. Let E be a connected compact Hausdorff space, and let C be the con-

nectivity class of topologically connected closed subsets in lattice F(E). The connectivity

openings {γx | x ∈ E} associated with C are l.u.s.c. on F(E); i.e.,

γx(
⋂
Aα ) =

⋂
γx(Aα), x ∈ E, (4.16)

for every family {Aα} of totally ordered subsets in F(E). �
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Proof. Since E is connected, then C is a strong connectivity class. By Proposition 4.1.12,

it suffices to show that
∧Q ∈ C, for every totally ordered subset Q ⊆ C. If Q = ∅, we have

that
∧Q = E ∈ C. Moreover, if an A ∈ Q is empty, the result follows from the fact that∧Q = ∅ ∈ C. Hence, we may assume that every A ∈ Q is nonempty, in which case

∧Q �= ∅
by Proposition 2.3.7(a). Suppose that L =

∧Q is disconnected. Then, there is a separation

of L into open sets G and H in E. Let C = L�H = L∩G and D = L�G = L∩H. Since

L is closed in E, C and D are nonempty disjoint closed sets in E. From Proposition 2.3.6,

there are two disjoint open sets U, V in E such that C ⊂ U and D ⊂ V . Now, we have

that L ⊂ U ∪ V . Since U ∪ V is an open set in E, we can use Proposition 2.3.7(b) to

conclude that there is some A ∈ Q such that A ⊂ U ∪ V . But, we have that L ⊆ A, which

implies A ∩ U �= ∅ and A ∩ V �= ∅. Therefore, U, V provide a separation of A, which is

a contradiction. Hence,
∧Q must be connected, and since it is also closed, we have that∧Q ∈ C, as required. Q.E.D.

Note that Proposition 4.1.11(b) implies that, for a compatible connectivity class C in

P(E) and for A ∈ F(E), the PCC cA(x) = γx(A) defines a function from A into F(E).

Therefore, its continuity properties can be assessed by using the H-M topology on F(E)

(see Section 2.4). In particular, we have the following result, which will be useful later.

4.1.14 Proposition. Let E be a compact Hausdorff space with a countable basis, and let

C be a compatible connectivity class in P(E), with connectivity openings {γx | x ∈ E},

such that the PCC cA(x) = γx(A) is an H-M u.s.c. function from A into F(E), for every

A ∈ F(E). Let B be an arbitrary subset of E. Any open set in E that contains a connected

component of B contains a connected component of B as well. �

Proof. Let C = γx(B) be a connected component of B, where x ∈ B. Since E has a

countable basis, it follows from Proposition 2.3.3(a) that there is a sequence (xn) of points

in B such that xn → x. Let U be an open set that contains C. Note that C = cB(x) misses

the closed set U c. Since cB is an H-M u.s.c. function from B into F(E), we can apply

Proposition 2.4.5(a) to conclude that cB(xn) misses U c, eventually. This implies that there

exists some xn0 ∈ B such that cB(xn0) = γxn0
(B) ⊂ U . Note that γxn0

(B) ⊆ γxn0
(B),

since γx is increasing and B ⊆ B. But xn0 ∈ B, so γxn0
(B) is a connected component of B

contained in U . Q.E.D.
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As we mentioned previously, topological connectivity is compatible. In addition, it

satisfies the requirements of the previous proposition. This is shown by the following result.

4.1.15 Proposition. Let E be a connected compact Hausdorff space with a countable

basis, and C be the topological connectivity class in P(E), with connectivity openings

{γx | x ∈ E}. The PCC cA(x) = γx(A) is an H-M u.s.c. function from A into F(E), for

every A ∈ F(E). �

Proof. Let A ∈ F(E) and (xi)i∈ZZ+ be a sequence of points in A such that xi → x ∈ A. We

need to show that lim cA(xi) ⊆ cA(x); i.e., lim γxi(A) ⊆ γx(A). We show that L = lim γxi(A)

is topologically connected. First, note that x ∈ L. Suppose that L is not topologically

connected. Then, there is a separation of L into open sets G and H. Let C = L�H = L∩G
and D = L � G = L ∩ H. Take x ∈ C and pick a y ∈ D. Since L is closed, C and D

are nonempty disjoint closed sets. From Proposition 2.3.6, there are two disjoint open sets

U and V such that x ∈ C ⊂ U and y ∈ D ⊂ V , with L ⊂ U ∪ V . Since y ∈ lim γxi(A),

there is a subsequence (yik ∈ γxik
(A)) converging to y, with xik → x. Let i1 (resp. i2)

be an index such that xik ∈ U , for all ik ≥ i1 (resp. yik ∈ V , for all ik ≥ i2), and let

i0 = max{i1, i2}. Note that, for ik ≥ i0, we have γxik
(A) ∩ U �= ∅ and γxik

(A) ∩ V �= ∅.

Since γxik
(A) is topologically connected, we must have γxik

(A) � (U ∪ V ) �= ∅, for all

ik ≥ i0; otherwise, U, V would be a separation of γxik
(A). Hence, we can pick a sequence

(zik ∈ γxik
(A) � (U ∪ V ))ik≥i0 , which must have an accumulation point z in E, since E is

compact. Note that z must be necessarily outside of U ∪ V , since zik ∈ (U ∪ V )c, which

is a closed set. But z ∈ L = lim γxi(A), which implies that L �⊆ U ∪ V , a contradiction.

Therefore, lim γxi(A) must be topologically connected. Recall that x ∈ L = lim γxi(A).

Since lim γxi(A) is topologically connected, we have that lim γxi(A) ⊆ γx(A). Q.E.D.

Note that the PCC function cA(x) = γx(A) associated with a topological connectivity

class need not be H-M l.s.c. For instance, let E be any connected, closed and bounded

subspace of IR2, furnished with the Euclidean topological connectivity, large enough to

contain the set A = ({0} × [0, 4/3]) ∪ (K × [0, 1]), where K = {1/i | i ∈ ZZ+}. See Fig. 4.5

for an illustration. Note that A ∈ F(E). Consider the sequence (xi = (1/i, 0))i∈ZZ+ .

Clearly, γxi(A) = {1/i} × [0, 1], with lim γxi(A) = {0} × [0, 1]. But xi → x = (0, 0), and

γx(A) = {0} × [0, 4/3], so that γx(A) �⊆ lim γxi(A).
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Figure 4.5: An example which shows that the PCC function cA(x) = γx(A) associated with
topological connectivity need not be H-M l.s.c. In this example, A = ({0}× [0, 4/3])∪ (K×
[0, 1]), where K = {1/i | i ∈ ZZ+}.

4.1.3 Reconstruction

Connectivity openings give rise to the important notion of reconstruction, one of the

most useful morphological tools for image analysis applications [34, 35, 74, 89]. As we have

seen, connectivity openings extract connected components marked by sup-generators. The

basic idea behind reconstruction is to extend this principle to include arbitrary markers, not

just sup-generators. Given an element M ∈ L, called a marker, the reconstruction ρ(A |M)

of an element A ∈ L from M is given by

ρ(A |M) =
∨
x≤M

γx(A). (4.17)

Note that ρ(A | O) =
∨ ∅ = O. Moreover, it is easy to see that ρ(A |M) = ρ(A |M ∧A), so

that ρ(A |M) = O, if M ∧A = O. As a consequence of this property, it is usually assumed

that M ≤ A. Note that, as a consequence of properties (ii) and (iii) of Theorem 4.1.9, we

have that

γx(A) =

 ρ(A | x), if x ≤ A
O, otherwise

. (4.18)

In particular, when the markerM is a sup-generator x, the reconstruction operator ρ(A | x)

reduces to the connectivity opening γx(A), provided that x ≤ A. Note that, if M = x �≤ A,

then it is not in general true that ρ(A | x) = γx(A) (consider for instance the grayscale

support connectivity of Example 4.1.3(h)). However, it can be easily verified that, for

atomic lattices, such as L = P(E), we have that ρ(A | x) = γx(A), for all x ∈ S.
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M

A

Figure 4.6: (a) A subset A of the 2-D Euclidean space and a marker M . (b) The recon-
struction ρ(A |M) of A from M . The Euclidean topological connectivity is assumed.

The following result shows that the reconstruction operator ρ(A | M) extracts the

connected components of A that “intersect” marker M .

4.1.16 Proposition. If ρ is the reconstruction operator, defined by (4.17), then

ρ(A |M) =
∨

{C �A | C ∧M �= O}. (4.19)

�

Proof. If C � A and C ∧M �= O, we can pick a sup-generator x ≤ C ∧M ≤ C, so that

C = γx(A), with x ≤ C ∧M ⇒ x ≤ M . This shows that ρ(A | M) =
∨
x≤M γx(A) ≥∨{C � A | C ∧M �= O}. To show the reverse inequality, recall that ρ(A | M) = ρ(A |

M ∧A) =
∨
x≤M∧A γx(A). We have that x ≤M ∧A⇒ x ≤ A⇒ x ≤ γx(A). But γx(A)�A,

with γx(A) ∧M ≥ x �= O. Hence, ρ(A |M) ≤ ∨{C �A | C ∧M �= O}. Q.E.D.

The reconstruction operator is illustrated in Fig. 4.6. Note that (4.19) is satisfied.

Since reconstruction generalizes, to some extent, connectivity openings, which carry all

information about the associated connectivity class (see Theorem 4.1.9), it is not surprising

that reconstruction may carry this information as well. In fact, this is true in infinite ∨-

distributive lattices, as it is shown by the following theorem (recall that Cop(L) denotes

the set of all families of connectivity openings on L).

4.1.17 Theorem. Let L be an infinite ∨-distributive lattice with sup-generating family S.

Let ρ(A | M) be the reconstruction operator, given by (4.17), associated with a family of

connectivity openings {γx | x ∈ S} ∈ Cop(L). Then,



4.1 Fundamental Notions 79

(i) M ∧A ≤ ρ(A |M),

(ii) ρ(· |M) is an opening,

(iii) ρ(A | ·) is increasing and idempotent,

(iv) ρ(A | ·) is symmetric; i.e., y ≤ ρ(A | x) ⇔ x ≤ ρ(A | y), for x, y ≤ A,

(v) ρ(A |M) =
∨
x≤M ρ(A | x).

Conversely, let Rec(L) denote the set of all operators ρ: L × L → L that satisfy properties

(i)–(v) above. For ρ ∈ Rec(L), let {γx | x ∈ S} be the family of operators given by (4.18).

Then, {γx | x ∈ S} is a family of connectivity openings on L; i.e., {γx | x ∈ S} ∈ Cop(L).

Moreover, its reconstruction operator coincides with ρ. Hence, (4.17) and (4.18) establish

a bijection between Cop(L) and Rec(L). �

Proof. To show property (i), note that x ≤ M ∧ A ⇒ x ≤ A ⇒ x ≤ γx(A). Hence,

M ∧A =
∨
x≤M∧A x ≤ ∨x≤M∧A γx(A) = ρ(A |M ∧A) = ρ(A |M).

Property (ii) follows from the fact that the supremum of openings is an opening [34].

To show property (iii), note thatM1 ≤M2 ⇒ ρ(A |M1) =
∨
x≤M1

γx(A) ≤ ∨x≤M2
γx(A)

= ρ(A | M2), so that ρ(A | ·) is increasing. To show idempotence, note that, from (i)

and the fact that ρ(A | ·) is increasing, we have that A ∧ M ≤ ρ(A | M) ⇒ ρ(A |
M) = ρ(A | A ∧ M) ≤ ρ(A | ρ(A | M)). To establish the reverse inequality, we will

show that, for any C � A, C ∧ ρ(A | M) �= O ⇒ C ∧ M �= O, which gives the de-

sired result, since, from (4.19), it would follow that ρ(A | ρ(A | M)) =
∨{C � A |

C ∧ ρ(A | M) �= O} ≤ ∨{C | C � A,C ∧ M �= O} = ρ(A | M). We will show

the contrapositive C ∧ M = O ⇒ C ∧ ρ(A | M) = O, for C � A. We have that

C ∧ ρ(A | M) = C ∧∨{Cα | Cα � A,Cα ∧M �= O} =
∨{C ∧ Cα | Cα � A,Cα ∧M �= O},

by the infinite ∨-distributivity of L. Now, since C ∧M = O, we have C �= Cα, for all

α, and since C and Cα are all grains of A, it follows that C ∧ Cα = O, for all α, so that

C ∧ ρ(A |M) = O, as required.

To show property (iv), notice that, since x, y ≤ A, it follows from (4.18) that ρ(A | x) =

γx(A) and ρ(A | y) = γy(A). Hence, we need to show that y ≤ γx(A) ⇔ x ≤ γy(A). We

have that y ≤ γx(A) ≤ A ⇒ y ≤ γy(A) ⇒ γy(A) ∧ γx(A) ≥ y �= O ⇒ γy(A) = γx(A). In

addition, y ≤ γx(A) ⇒ γx(A) �= O, so that x ≤ γx(A) = γy(A). The proof of the reverse

implication is similar.
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To show property (v), notice that x ≤ M ⇒ ρ(A | x) ≤ ρ(A | M) ⇒ ∨x≤M ρ(A | x) ≤
ρ(A |M), since ρ(A | ·) is increasing. The reverse inequality follows from ρ(A |M) = ρ(A |
M ∧A) =

∨
x≤M∧A γx(A) =

∨
x≤M∧A ρ(A | x) ≤ ∨x≤M ρ(A | x), where we used (4.18).

To show the second part of the result, assume that ρ ∈ Rec(L). We show that {γx | x ∈
S}, given by (4.18), are openings that satisfy the properties listed in Theorem 4.1.9, namely:

(a) γx(x) = x, (b) x �≤ A ⇒ γx(A) = O, and (c) γx(A) ∧ γy(A) �= O ⇒ γx(A) = γy(A).

By property (ii) of ρ, we have that ρ(· | x) is an opening, which implies that γx is also

an opening, for x ∈ S. To show (a), note that γx(x) = ρ(x | x). But property (i) of ρ

gives x ≤ ρ(x | x), whereas, from property (ii), we get ρ(x | x) ≤ x, so that ρ(x | x) = x.

Condition (b) is satisfied by definition. To show (c), note that γx(A) ∧ γy(A) �= O implies

γx(A) �= O and γy(A) �= O, so that γx(A) = ρ(A | x) and γy(A) = ρ(A | y) (and x ≤ A,

y ≤ A). Hence, we need to show that ρ(A | x) ∧ ρ(A | y) �= O ⇒ ρ(A | x) = ρ(A | y).
Let z ≤ ρ(A | x) ∧ ρ(A | y). From property (iii) of ρ, we have that z ≤ ρ(A | x) ⇒
ρ(A | z) ≤ ρ(A | ρ(A | x)) = ρ(A | x). On the other hand, recall that x ≤ A, and

z ≤ ρ(A | x) ≤ A, so we can apply property (iv) of ρ to get z ≤ ρ(A | x) ⇒ x ≤ ρ(A | z),
so that ρ(A | x) ≤ ρ(A | ρ(A | z)) = ρ(A | z), as before. Hence, ρ(A | x) = ρ(A | z).
By using the same chain of reasoning, we get that z ≤ ρ(A | y) ⇒ ρ(A | y) = ρ(A | z).
Therefore, ρ(A | x) = ρ(A | y). Hence, {γx | x ∈ S} ∈ Cop(L). Finally, we show that

ρ′(A | M) =
∨
x≤M γx(A) = ρ(A | M), for all A,M ∈ L. We have that ρ′(A | M) = ρ′(A |

M ∧ A) =
∨
x≤M∧A γx(A) =

∨
x≤M∧A ρ(A | x) = ρ(A | M ∧ A) = ρ(A | M), where we

used (4.18) and property (v) of ρ. Q.E.D.

In a slightly different form, Theorem 4.1.17 was established for the binary case in [35,

Prop. 5.1]. Note that the infinite ∨-distributivity of L is needed only to establish the idempo-

tence of ρ(A | ·); i.e., to show that (4.17) gives a mapping from Cop(L) into Rec(L). In par-

ticular, (4.18) maps Rec(L) into Cop(L), without the assumption of infinite ∨-distributivity

of L.

We remark that a similar result was independently obtained by C. Ronse and J. Serra

in [64, Thm. 19]. The basic differences between our result and theirs are: (1) Ronse and

Serra do not assume infinite ∨-distributivity for L; (2) they define a set Rec∗(L) of re-

construction operators on L that includes, in a different form, properties (i)–(iv) of Theo-

rem 4.1.17, but leaves out property (v), so that Rec(L) ⊆ Rec∗(L). As a result, Theorem 19

in [64] does not establish a bijection from Rec∗(L) to Cop(L), but only a surjection (in the
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case when L is infinite ∨-distributive). In other words, two different reconstruction opera-

tors, in the sense of [64], can give rise to the same family of connectivity openings; i.e., to

the same connectivity on L, a situation that is ruled out by property (v) of Theorem 4.1.17.

As a matter of fact, property (v) is satisfied whenever ρ(A | ·) is a dilation on L (in the

case of strongly semi-atomic lattices, such as L = P(E) or L = Fun(E,ZZ), we can show

that property (v) is equivalent to ρ(A | ·) being a dilation; e.g., see H. Heijmans’ original

binary result in [35, Prop. 5.1]). Note that, since the inclusion Rec(L) ⊆ Rec∗(L) can be

strict, more examples of reconstruction operators are allowed by the framework in [64] (in

particular, that framework allows examples where ρ(A | ·) is not a dilation).

Theorems 4.1.9 and 4.1.17 show that connectivity on an infinite ∨-distributive lattice L
can be equivalently specified by: (1) a connectivity class C ∈ Ccl(L); (2) a family of connec-

tivity openings {γx | x ∈ S} ∈ Cop(L); or (3) a reconstruction operator ρ ∈ Rec(L). Given

any one of these three equivalent ways of specifying a connectivity, one can move liberally

among all three.

We remark here that, since Cop(L) is a lattice under the partial order induced by the

inclusion partial order relation in Ccl(L) (see remarks after Theorem 4.1.9), the bijection

between Cop(L) and Rec(L) induces a partial order relation on the set Rec(L), under which

Rec(L) is also a lattice. Of course, these three lattices are isomorphic to each other.

Below, we give two examples of reconstruction operators that lead to connectivities.

4.1.18 Example.

(a) Let L = P(ZZn), with the points as sup-generators. Consider a symmetric adjacency

relation on ZZn, such as the adjacency relation given by the edges of an undirected

graph G = (ZZn, L) – see Section 3.2. Let the operator ρ: P(ZZn) × P(ZZn) → P(ZZn)

be defined by the following propagation algorithm (see also [35]). Given A,M ⊆ ZZn:

R = M ∩A;

repeat

N = {all points in A�R that are adjacent to R};

R = R ∪N ;

until N = ∅;

ρ(A |M) = R;
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It is easy to see that ρ ∈ Rec(L). The associated connectivity corresponds to graph-

theoretic connectivity on ZZn, associated with a graph G = (ZZn, L), where L is given

by the symmetric adjacency relation under consideration. In practice, this is the most

common form of binary reconstruction encountered in digital image analysis, where

the adjacency relation is given, for example, by the 4- or 8-adjacency relations on ZZ2,

discussed in Section 3.2.

(b) Let L be an infinite ∨-distributive lattice, and δ be an extensive dilation on L. For

a given A ∈ L, the operator δA(M) = δ(M) ∧ A is clearly a dilation on L, known

as the geodesic dilation of the marker M inside the mask A. Define the operator

ρ: L × L → L by

ρ(A |M) =
∞∨
i=1

δ iA(M), (4.20)

where ψi denotes the composition of operator ψ i times. The operator ρ(A | M) is

known as the geodesic reconstruction of the marker M inside the mask A. It is clear

that ρ(A | ·) is a dilation on L, since it is a supremum of dilations [34]. It follows

that property (v) of Theorem 4.1.17 is satisfied. Under certain (not too demanding)

additional conditions on the dilation δ, given in [64], one can show that properties

(i)–(iv) are satisfied as well. In other words, ρ ∈ Rec(L), so that it gives rise to a

connectivity class in L. ♦

Example 4.1.18(b) is taken from [64]. It generalizes (to the case of infinite ∨-distributive

lattices) the well-known concept of binary geodesic reconstruction [34] that has been exten-

sively used in image analysis as a tool for extracting connected components in binary images.

As a matter of fact, Example 4.1.18(a) is a special case of this general framework, where the

dilation δ on P(ZZn) is given by δ(M) = M ∪ {v ∈ ZZn | v is adjacent to a point w ∈M},

for M ⊆ ZZn.

We conclude this section by discussing the well-known grayscale reconstruction operator,

which is very useful in applications of image processing and analysis [89]. Given a connec-

tivity class in P(E), and the associated reconstruction operator ρ: P(E) × P(E) → P(E),

we define the operator ρ̃: Fun(E, T ) × Fun(E, T ) → Fun(E, T ) by

ρ̃ (f | g)(v) =
∨

{t ∈ T | v ∈ ρ(Xt(f) | Xt(g))}, v ∈ E, (4.21)

where Xt: Fun(E, T ) → P(E) is the threshold operator, given by Xt(f) = {v ∈ E |
f(v) ≥ t}, for f ∈ Fun(E, T ). If we assume that T is a chain, then the operator ρ̃(f | g)
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Figure 4.7: (a) Original image f and a marker g. (b) The grayscale reconstruction ρ̃ (f | g),
according to the usual topological connectivity of the Euclidean real line.

in (4.21) is known as the grayscale reconstruction of f from marker g. As can be eas-

ily seen, ρ̃ (· | g) is the semi-flat operator generated by the family of binary operators

{ψt(·) = ρ(· | Xt(g)) | t ∈ T } (see Section 2.2). From Proposition 2.2.13(a) and item (ii) of

Theorem 4.1.17, it follows that ρ̃ (· | g) is an opening on Fun(E, T ). Fig. 4.7 illustrates the

grayscale reconstruction operator in the one-dimensional case. The connectivity assumed

here is the usual topological connectivity of the Euclidean real line. Although there is

no counterpart to (4.19) for grayscale reconstruction, we could state, in loose terms, that

grayscale reconstruction recovers the “connected peaks” of f , according to the assumed

connectivity, “marked by” g, as can be seen in Fig. 4.7.

4.2 Connectivity Classes in ψ-Invariant Lattices

Given a lattice L, finding a family C ⊆ L such that axiom (iii) of connectivity classes

is satisfied depends on the supremum and infimum operations associated with L. We now

present a method that allows us to construct a new lattice Lψ, from a given lattice L,

where the infimum operation in L is suitably “modified” so that axiom (iii) becomes less

restrictive. The new lattice Lψ, to be referred to as a ψ-invariant lattice, is constructed by

means of an appropriately chosen operator ψ and allows us to develop interesting examples

of connectivity classes, including a novel example of connectivity for grayscale images.

(in [79, 80], J. Serra also introduced examples of grayscale connectivity classes in function

lattices other than Fun(E, T ), using an approach different from ours).
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4.2.1 ψ-Invariant Lattices

Recall from Section 2.2 the definition of the characteristic opening ψ◦ associated with

an operator ψ. We have the following result.

4.2.1 Proposition. Given an operator ψ on a lattice L such that Inv(ψ) is sup-closed,

Lψ = Inv(ψ) is an underlattice of L, with supremum
∨ψ and infimum

∧ψ, given by

∨ψ
Aα =

∨
Aα and

∧ψ
Aα = ψ◦

(∧
Aα

)
, (4.22)

where ψ◦ is the characteristic opening associated with ψ, given by (2.15). �

Proof. Since Inv(ψ) is sup-closed, Lψ is non-empty, and therefore Lψ is a poset with the

partial order relation of L. Moreover, if {Aα} ⊆ Lψ, we have that
∨
Aα ∈ Lψ, so that∨ψAα =

∨
Aα. For the infimum in Lψ, we have that

∧ψ
Aα =

∨ψ{B ∈ Lψ | B ≤ Aα,∀α}
=
∨

{B ∈ Inv(ψ) | B ≤
∧
Aα}

= ψ◦
(∧

Aα

)
, (4.23)

which shows the desired result. Q.E.D.

Lattice Lψ is called the ψ-invariant lattice associated with ψ. From Proposition 2.2.5,

we have that Inv(ψ◦) = 〈 Inv(ψ) | ∨ 〉 = Inv(ψ) = Lψ. Hence,
∧ψAα =

∧
Aα if and only if∧

Aα ∈ Lψ. Otherwise, from the anti-extensivity of ψ◦, the infimum in Lψ is strictly less

than the infimum in L.

The characteristic opening ψ◦ acts as a projection from the base lattice L onto the new

lattice Lψ. Given an A ∈ L, it is easy to see from (2.15) that ψ◦(A) is the largest element

of Lψ that is smaller than A. This property will be of importance later, when we construct

connectivity classes in ψ-invariant lattices. This construction requires preprocessing by ψ◦

in order to bring a given element of L into Lψ.

Notice that Proposition 4.2.1 requires that ψ be such that Inv(ψ) is sup-closed. From

Proposition 2.2.4, the increasing and anti-extensivity properties of ψ are sufficient conditions

for Inv(ψ) to be sup-closed. However, they are not necessary. In fact, we later present an

example of a grayscale connectivity class in a ψ-invariant lattice for which ψ is not increasing,

but for which Inv(ψ) is sup-closed.
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An important special case of a ψ-invariant lattice is obtained when ψ is an opening θ. As

we mentioned above, Proposition 2.2.4 guarantees that Inv(θ) is sup-closed. By employing

Proposition 2.2.6(c), we obtain the following corollary to Proposition 4.2.1 (this result also

corresponds to Proposition 2.2.2(b)).

4.2.2 Corollary. If θ is an opening on L, then Lθ = Inv(θ) is an underlattice of L, with

supremum
∨θ and infimum

∧θ, given by

∨θ
Aα =

∨
Aα and

∧θ
Aα = θ

(∧
Aα

)
. (4.24)

�

We conclude this subsection with an important observation. Although the supremum in

a ψ-invariant lattice Lψ is the same as the supremum in lattice L, the infimum in Lψ is less

than the infimum in L. Clearly, it is possible that
∧ψAα = O even though

∧
Aα �= O, so that

the infimum in the new lattice Lψ may be thought of as being less restrictive with respect

to axiom (iii) of connectivity classes. In the following subsections, it will become clear that

this fact can be exploited in order to construct new examples of connectivity classes.

4.2.2 B-open Connectivity Class

Let us take L = P(E), with E = IRn or ZZn, and consider the θ-invariant lattice Lθ =

Inv(θ), where θ is the structural opening θ(A) = A◦B. Notice that

Lθ = {A⊕B | A ∈ P(E)}. (4.25)

From Corollary 4.2.2, Lθ is an underlattice of P(E), where the supremum is set union and

the infimum is the structural opening of set intersection with the structuring element B.

Lattice Lθ is sup-generated by the family Sθ = {Bv | v ∈ E}, where Bv denotes the

translation of B to a point v ∈ E. Note that Sθ is composed of atoms, so that Lθ is atomic.

The following result provides a connectivity class in Lθ.

4.2.3 Proposition. Let C be a connectivity class in P(E) and assume that Bv ∈ C, for all

v ∈ E. Then, Cθ = C ∩ Lθ is a connectivity class in Lθ. �

Proof. Clearly, ∅ ∈ Cθ and Sθ ⊆ Cθ. To show axiom (iii) of connectivity classes, consider

a family {Cα} in Cθ such that
∧θCα = (

⋂
Cα)◦B �= ∅. Since θ is anti-extensive, this
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Figure 4.8: An example of B-open connectivity. Note that, although A consists of one con-
nected component in C, A is segmented into three connected components in Cθ. Moreover,
the union of these three connected components does not reconstruct the original object A,
but its projection θ(A). The Euclidean topological connectivity is assumed for C.

implies that
⋂
Cα ⊇ (

⋂
Cα)◦B �= ∅. But since Cα ∈ C, for all α, we conclude that∨θCα =

⋃
Cα ∈ C, so that

∨θCα ∈ Cθ. Q.E.D.

The connectivity class Cθ consists of all B-open connected elements of P(E), according

to C. It will therefore be referred to as the B-open connectivity class. Fig. 4.8 depicts an

example of B-open connectivity, with the Euclidean topological connectivity assumed for C.

Note that, although A consists of one connected component in C, A is segmented into three

connected components in Cθ. Moreover, the union of these three connected components

does not reconstruct the original object A, but its projection θ(A).

4.2.3 Graph-Theoretic k-Connectivity Class

Recall the concept of graph-theoretic k-connectivity, discussed in Chapter 3. We show

here that this classical notion leads to an interesting example of a connectivity class.

Let us take L = P(ZZn), and consider the θ-invariant lattice Lθ = Inv(θ), where θ is a

discrete area opening, given by

θ(A) =

 A, if |A | ≥ k
∅, otherwise

, (4.26)

with |A | being the number of points in A and k being a positive integer. Notice that

Lθ = {A ∈ P(ZZn) | A = ∅ or |A| ≥ k}. (4.27)

Therefore, Lθ contains the empty set and the subsets of ZZn that contain at least k points.

From Corollary 4.2.2, Lθ is an underlattice of P(ZZn), with the supremum being set union
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and the infimum given by

∧θ
Aα =


⋂
Aα, if |⋂Aα | ≥ k

∅, otherwise
. (4.28)

Lattice Lθ is sup-generated by the family Sθ = {A ∈ P(ZZn) | |A | = k}; i.e., the sup-

generators are the subsets of ZZn that have exactly k points. Note that Sθ is composed of

atoms, so that Lθ is atomic.

The following result provides a connectivity class in Lθ.

4.2.4 Proposition. Consider a graph G = (ZZn, L). The family

Cθ = Sθ ∪ {A ∈ Lθ | A is k-connected in G} (4.29)

is a connectivity class in Lθ. �

Proof. By definition of k-connectivity, ∅ ∈ Cθ. In addition, Sθ ⊆ Cθ, by (4.29). This shows

axioms (i) and (ii) of connectivity classes. Moreover, axiom (iii) can be shown easily with

the help of Proposition 3.2.11(a). Q.E.D.

We refer to Cθ as the graph-theoretic k-connectivity class. Fig. 4.9 depicts an example

of graph-theoretic k-connectivity, for n = 2 and k = 2, where 8-adjacency connectivity

is assumed for G. Note that A ∈ Lθ is not 2-connected. It consists of two 2-connected

components C1 and C2, with C1 ∩C2 �= ∅; but C1
∧θ C2 = ∅. Therefore, although the two 2-

connected components C1, C2 overlap in L = P(ZZ2), they do not overlap in Lθ. Overlapping

of connected components may add extra flexibility in certain applications. For example,

overlapping between two grains may be due to noise, in which case the two components

should be considered disjoint.

4.2.4 Flat Grayscale Connectivity Class

In this subsection, we provide an example of a connectivity class for grayscale functions,

which is more meaningful than the grayscale “support” connectivity of Example 4.1.3(h).

Essentially, this example is constructed by extending a binary connectivity class to a

grayscale one by using threshold decomposition. Hence, the name “flat grayscale con-

nectivity class.” It turns out that, in our scheme, the grayscale connected components of an
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A C1
C2

connected components in C�

Figure 4.9: An example of graph-theoretic k-connectivity, with k = 2. Although A ∈ Lθ
is not 2-connected, it consists of two 2-connected components C1 and C2, which overlap in
L = P(ZZ2) but do not overlap in Lθ.

image will be defined in terms of its regional maxima. We remark that using regional max-

ima to define grayscale connected components is an established principle in the literature

of image processing and analysis. For instance, see [38, 47].

Recall the lattice Funu(E, T ) of upper semi-continuous functions, discussed in Exam-

ple 2.1.2(e). Here, as our base lattice L, we adopt the lattice Funu(E, IR) of (extended)

real-valued upper semi-continuous functions on E. We need to characterize the supremum

in Funu(E, IR). Before that, however, we show the following lemma.

4.2.5 Lemma. Let f ∈ Fun(E, IR) be a function generated by a decreasing family of

sets {A(t)} t∈IR. The smallest u.s.c. function g ∈ Fun(E, IR) greater than f is generated by

the family of sets {A(t)} t∈IR. �

Proof. First, note that, according to Proposition 2.1.3(a), g is indeed u.s.c. since, by

Proposition 2.2.11(a), Xt(g) =
⋂
s<tA(s), so that Xt(g) is a closed set, for all t ∈ IR.

Moreover, Xt(g) =
⋂
s<tA(s) ⊇ ⋂s<tA(s) = Xt(f), for all t ∈ IR, so that, by Proposi-

tion 2.2.12(a), g ≥ f . Now, let g′ be any u.s.c. function such that g′ ≥ f . For all t ∈ IR,

Xt(g′) ⊇ Xt(f) =
⋂
s<tA(s) ⊇ A(t) ⇒ Xt(g′) ⊇ A(t), since Xt(g′) is closed. But this

implies that Xt(g′) =
⋂
s<tXs(g

′) ⊇ ⋂s<tA(s) = Xt(g), for all t ∈ IR, or g′ ≥ g. Hence, g

is the smallest u.s.c. function greater than f . Q.E.D.

We now have the following result.
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4.2.6 Proposition. The supremum
∨
ufα in Funu(E, IR) of a family {fα} in Funu(E, IR) is

the function generated by the sets
{⋃

Xt(fα)
}
t∈IR. �

Proof. Note that, by definition of the supremum,
∨
ufα =

∧
u{f ∈ Funu(E, IR) | f ≥

fα,∀α} =
∧{f is u.s.c. | f ≥ ∨ fα}. From Proposition 2.2.12(b),

∨
fα is the function in

Fun(E, IR) generated by the sets {⋃Xt(fα)} t∈IR. It then follows from Lemma 4.2.5 that∨
ufα is the function in Funu(E, IR) generated by the sets

{⋃
Xt(fα)

}
t∈IR. Q.E.D.

Of course, it is not in general true that Xt(
∨
ufα) =

⋃
Xt(fα), for all t ∈ IR. In addition,

note that f1 ∨u f2 = f1 ∨ f2, for any f1, f2 ∈ Funu(E, IR), where ∨ denotes the pointwise

supremum in Fun(E, IR). In general, whenever
∨
fα is u.s.c., then

∨
ufα =

∨
fα. Hence, the

supremum
∨
u in lattice Funu(E, IR) can, and often does, reduce to the familiar pointwise

supremum
∨

. Finally, recall that the infimum
∧
u in lattice Funu(E, IR) is always the

familiar pointwise infimum
∧

.

From this point on, we assume that E is a connected compact Hausdorff space with a

countable basis (for example, E is a connected, closed and bounded subset of IRn, with the

Euclidean topology), and that C is a compatible connectivity class in P(E), such that:

(a) The connectivity openings γx are ↓-continuous on F(E), for all x ∈ E.

(b) The PCC function cA(x) = γx(A) is an H-M u.s.c. function from A into F(E), for all

A ∈ F(E).

For example, the topological connectivity class in P(E) satisfies these requirements, as

shown in Propositions 4.1.13 and 4.1.15.

Next, we define the notion of a regional maximum.

4.2.7 Definition. The set R ⊆ E is a regional maximum of f ∈ Funu(E, IR) at level t ∈ IR

if R is a connected component of Xt(f), according to C, and R∩Xs(f) = ∅, for all s > t. "

Clearly, the concept of a regional maximum depends on the underlying connectivity

class C. Note that R is a closed set, since Xt(f) is closed, for all t ∈ IR, and C is compatible

(see Propositions 2.1.3(a) and 4.1.11(b)). It is easy to see that, if R is a regional maximum

of f ∈ Funu(E, IR), then f is constant over R. We denote this constant value by f(R). In

addition, we denote by R(f) the set of all regional maxima of a function f , according to C,

and by Rt(f) the set of all regional maxima of f that are above level t; i.e., Rt(f) = {R ∈
R(f) | f(R) ≥ t}, for t ∈ IR. We now have the following result.
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4.2.8 Proposition. Let f ∈ Funu(E, IR).

(a) The function f has at least one regional maximum.

(b) The function f has exactly one regional maximum if and only if Xt(f) ∈ C, for all

t ∈ T . �

Proof. (a): From Weierstrass’ theorem of real analysis [39] and the facts that E is compact

and f is an u.s.c. function, f achieves its supremum in E; i.e., there is a point x0 ∈ E such

that f(x0) =
∨{f(x) | x ∈ E}. It is clear that Xt(f) = ∅, for all t > f(x0). Hence,

R = γx0(Xf(x0)(f)) is a regional maximum of f at level f(x0).

(b): We show that the function f ∈ Funu(E, IR) has two or more regional maxima if

and only if Xt(f) �∈ C, for some t ∈ IR, which is the contrapositive of the assertion. To

show the direct implication, assume that R1 and R2 are two regional maxima of f . If

f(R1) = f(R2) = t, then Xt(f) �∈ C. Otherwise, let f(R1) = t1 > t2 = f(R2). We have

that R1 ⊆ Xt1(f) ⊆ Xt2(f). But R2 ∩ Xt1(f) = ∅ ⇒ R1 ∩ R2 = ∅, so that R2 must be a

strict subset of Xt2(f), which implies that Xt2(f) �∈ C. To show the converse implication,

assume that Xt(f) �∈ C, for some t ∈ IR, and let C1 and C2 be two connected components of

Xt(f). Sets C1 and C2 are closed and therefore compact, according to Proposition 2.3.4(a).

Hence, the restrictions f1 and f2 of f to C1 and C2, respectively, are u.s.c. functions defined

on compact sets, so that each achieves its supremum, say at points x1 ∈ R1 and x2 ∈ R2.

Clearly, the corresponding regional maxima of f1 and f2 at f(x1) and f(x2), respectively,

are distinct regional maxima of f . Q.E.D.

For a given parameter q ∈ IR, consider the operator

ψ(f) =

 f, if R(f) = Rq(f)

O, otherwise
, f ∈ Funu(E, IR). (4.30)

In other words, ψ leaves f unchanged if all regional maxima of f are at level q or above,

and produces the null function otherwise. Note that ψ is anti-extensive and idempotent,

but not increasing; hence, it is not an opening. However, we have the following result.

4.2.9 Proposition. Let ψ be as in (4.30). Then, Inv(ψ) is sup-closed in Funu(E, IR). �

Proof. First, note that ψ(O) = O so that O ∈ Inv(ψ). Let {fα} be a family of func-

tions in Funu(E, IR) such that {fα} ⊆ Inv(ψ). We can assume, without loss of generality,
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that all fα are nonzero. Hence, Rq(fα) = R(fα) �= ∅, for each fα, which implies that

Xt(fα) �= ∅, for all t ≤ q. Let f =
∨
ufα, where

∨
u is the supremum in lattice Funu(E, IR).

From Propositions 2.2.11(a) and 4.2.6, we have that Xt(f) =
⋂
s<t

⋃
Xs(fα) ⊇ ⋃Xt(fα).

Therefore, Xt(f) �= ∅, for all t ≤ q. Suppose that R is a regional maximum of f at a level

r < q. By definition, we have that R ∩Xt(f) = ∅, for all t > r. Therefore, the sets R and

T = Xq(f) are closed nonempty disjoint sets. Moreover, by Proposition 2.3.6, there exist

disjoint open sets U and V such that R ⊂ U and T ⊂ V . Now, given x ∈ R, we have that

R = γx(Xr(f)) = γx(
⋂
s<r

⋃
Xs(fα)) =

⋂
s<r γx(

⋃
Xs(fα)), from the ↓-continuity of γx on

F(E) and Proposition 2.2.10. Let C(s) = γx(
⋃
Xs(fα)), for s < r. Note that {C(s)}s<r

is a decreasing family of nonempty closed sets in the compact space E, so that we can use

Proposition 2.3.7(b) to conclude that there is some p < r such that C(p) ⊂ U . Since the

PCC function is H-M u.s.c., we can apply Proposition 4.1.14 to conclude that there is some

connected component C of
⋃
Xp(fα) such that C ⊂ U . Clearly, this implies that there

is some index α′ such that a connected component C ′ of Xp(fα′) is contained in U . This

follows from the fact that each component of
⋃
Aα must contain at least one component of

some Aα′ . However, note that T = Xq(f) ⊇ ⋃Xq(fα) implies that Xq(fα) ⊂ V , for all α.

Hence, C ′ ∩ Xq(fα′) = ∅, so that function fα′ has a regional maximum inside C ′ at some

level below t, which is a contradiction. Therefore, f =
∨
ufα must not have any regional

maxima below level q, in which case ψ(f) = f and, therefore, f ∈ Inv(ψ). Q.E.D.

From Proposition 2.2.6(c), since ψ is not an opening, the associated characteristic open-

ing ψ◦, given by (2.15), will be different from ψ on Funu(E, IR). We will investigate the

form of ψ◦ next. Recall that a cylinder hA,t of base A ⊆ E and height t ∈ IR is a function

from E into IR defined by

hA,t(x) =

 t, if x ∈ A,
0, otherwise

, for x ∈ E. (4.31)

We need the following auxiliary result.

4.2.10 Lemma. Let f ∈ Funu(E, IR), and let ρ̃: Fun(E, IR) × Fun(E, IR) → Fun(E, IR) be

the grayscale reconstruction operator, given by (4.21).

(a) The function

g = ρ̃(f | hR,f(R)), R ∈ R(f), (4.32)

is u.s.c., and R(g) = {R}, with g(R) = f(R).
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(b) We have that

f =
∨
u
{ρ̃(f | hR,f(R)) | R ∈ R(f)}. (4.33)

�

Proof. (a): From the definition of ρ̃ in (4.21), we have that

g(v) =
∨

{t ∈ IR | v ∈ ρ(Xt(f) | Xt(hR,f(R)))}, v ∈ E. (4.34)

Note that Xt(hR,f(R)) = R, if t ≤ f(R), and Xt(hR,f(R)) = ∅, if t > f(R). Also,

Xt(f) ∩ R = ∅, for t > f(R). Hence, ρ(Xt(f) | Xt(hR,f(R))) = ρ(Xt(f) | R), for all t ∈ IR.

Moreover, R is connected, so that it must be contained in one of the grains of Xt(f) and,

therefore, ρ(Xt(f) | R) = γx(Xt(f)), for some x ∈ R. Thus, (4.34) becomes

g(v) =
∨{t ∈ IR | v ∈ γx(Xt(f))}, for v ∈ E. Hence, Xt(g) =

⋂
s<t γx(Xs(f)) =

γx
(⋂
s<tXs(f)

)
= γx(Xt(f)), for all t ∈ IR, from the ↓-continuity of γx on F(E) and

Proposition 2.2.10. In other words, Xt(g) is a closed (by compatibility of C) connected set,

for all t ∈ IR, so that, from Propositions 2.1.3(a) and 4.2.8(b), g is u.s.c. and has a single

regional maximum. In addition, we have that Xt(g) = R, for t = f(R), and Xt(g) = ∅, for

t > f(R), so that R is the only regional maximum of g at level g(R) = f(R).

(b): First, note that the right-hand side of (4.33) makes sense since, from (a), ρ̃(f |
hR,f(R)) is a function in Funu(E, IR), for each R ∈ R(f). Let C be a connected com-

ponent of any nonempty threshold set Xt(f) of f . It follows from Proposition 2.3.4(a),

and the compatibility of C, that C is compact. In addition, the restriction of f to C is

an u.s.c. function; hence, C contains some regional maximum R ∈ Rt(f). Moreover, the

definition of regional maximum implies that each R ∈ Rt(f) must be contained in some

component C of Xt(f). Since Xt(f) equals the union of its components, we conclude that

Xt(f) =
⋃
R∈Rt(f) ρ(Xt(f) |R). But, by definition, any R ∈ R(f) � Rt(f) does not inter-

sect Xt(f). Hence,

Xt(f) =
⋃

R∈R(f)

ρ(Xt(f) |R). (4.35)

Now, from the proof of part (a), we have that

Xt( ρ̃(f | hR,f(R))) = ρ(Xt(f) |R), for all t ∈ IR. (4.36)

It follows from Propositions 2.2.11(a) and 4.2.6, and (4.35), (4.36), that Xt(
∨
u{ρ̃(f |

hR,f(R)) | R ∈ R(f)} ) =
⋂
s<t

⋃
R∈R(f)Xt( ρ̃(f | hR,f(R))) =

⋂
s<t

⋃
R∈R(f) ρ(Xs(f) |R) =⋂

s<tXs(f) =
⋂
s<tXs(f) = Xt(f), for all t ∈ IR, which implies (4.33). Q.E.D.
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We can now provide an expression for the characteristic opening ψ◦ associated with the

operator ψ given by (4.30).

4.2.11 Proposition. For the operator ψ given by (4.30), the associated characteristic

opening ψ◦ is given by

ψ◦(f) =
∨
u
{ρ̃(f | hR,f(R)) | R ∈ Rq(f)}, f ∈ Funu(E, IR). (4.37)

�

Proof. Consider the operator θ(f) =
∨
u{ρ̃(f | hR,f(R)) | R ∈ Rq(f)}. Note that

Lemma 4.2.10(a) guarantees that θ is an operator on Funu(E, IR).

We first show that θ is an increasing operator. Let f, g ∈ Funu(E, IR) such that

f ≤ g. Consider a regional maximum R ∈ Rq(f) at level t = f(R). Since R ∈ C and

R ⊆ Xt(f) ⊆ Xt(g), we must have that R ⊆ C, for some connected component C of Xt(g).

As argued in the proof of Lemma 4.2.10(b), there is a regional maximum R′ ∈ Rq(g) such

that R′ ⊆ C. For any s ≤ t, it is clear that ρ(Xs(g) | R) = ρ(Xs(g) | R′), since both R

and R′ are contained in the same connected component of Xs(g) that contains C. From

(4.36), this implies that Xs( ρ̃(f | hR,f(R))) = ρ(Xs(f) | R) ⊆ ρ(Xs(g) | R) = ρ(Xs(g) |
R′) = Xs( ρ̃(g | hR′,g(R′))), for all s ≤ f(R), where we have used the fact that ρ(· | R) is

an opening (see Theorem 4.1.17) and thus increasing. Since Xs( ρ̃(f | hR,f(R))) = ∅, for

s > f(R), we conclude that ρ̃(f | hR,f(R)) ≤ ρ̃(g | hR′,g(R′)). This implies that θ(f) ≤ θ(g).
Now, let f ∈ Funu(E, IR). If Rq(f) = ∅, it is easy to verify that (4.37) holds trivially.

Assume that Rq(f) �= ∅ and let ψ◦ be the characteristic opening associated with the operator

ψ given by (4.30). From Propositions 2.2.5 and 4.2.9, we have that Inv(ψ◦) = Inv(ψ),

and since ψ◦(f) ∈ Inv(ψ◦), ψ◦(f) ∈ Inv(ψ) ⇒ R(ψ◦(f)) = Rq(ψ◦(f)). It follows from

(4.30) that ψ◦(f) = θ(ψ◦(f)). But, since θ is increasing and ψ◦ is anti-extensive, we have

that θ(ψ◦(f)) ≤ θ(f). Therefore, ψ◦(f) ≤ θ(f). To show the converse inequality, note

that, for R ∈ Rq(f), Lemma 4.2.10(a) implies that ρ̃(f | hR,f(R)) ∈ Inv(ψ), so that, from

Proposition 2.2.6(b) and the increasing property of ψ◦, ρ̃(f | hR,f(R)) = ψ(ρ̃(f | hR,f(R))) ≤
ψ◦(ρ̃(f | hR,f(R))) ≤ ψ◦(f), for all R ∈ Rq(f) and, therefore, θ(f) ≤ ψ◦(f). Hence,

ψ◦(f) = θ(f), which shows (4.37). Q.E.D.

Note that ψ◦ is an operator that effectively removes all regional maxima of f below q.

In addition, note that ψ ≤ ψ◦, as required by Proposition 2.2.6(b).
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As a direct consequence of Proposition 4.2.1 and the exposition above, we have the

following result.

4.2.12 Proposition. If ψ is the operator given by (4.30), then Lψ = Inv(ψ) is an under-

lattice of Funu(E, IR), with supremum
∨ψ and infimum

∧ψ, given by∨ψ
fα =

∨
u
fα, (4.38)∧ψ

fα = ψ◦
(∧

u
fα

)
=
∨
u
{ρ̃(
∧
fα | hR,(∧ fα)(R)) | R ∈ Rq(

∧
fα)}. (4.39)

�

Note that
∧ψfα = O if and only if

∧
fα has no regional maxima at level q or above.

Hence, even if the functions fα overlap according to the pointwise infimum, they can still

have zero infimum in Lψ, provided that the overlap is “small enough.” Therefore, the

infimum
∧ψ is less restrictive, with respect to axiom (iii) of connectivity classes, than the

original infimum
∧
u =
∧

.

Next, we introduce a sup-generating family for lattice Lψ.

4.2.13 Proposition. Let Lψ = Inv(ψ), where ψ is the operator given by (4.30). The

family

Sψ = {δv,t | t ≥ q} ∪ {f ∈ Funu(E, IR) | R(f) = {R}, f(R) = q} (4.40)

is sup-generating in Lψ. �

Proof. First, note that Sψ ⊆ Lψ. Let f ∈ Funu(E, IR), and consider the two functions f1,

f2 ∈ Lψ generated by the sets

F1(t) =

 Xt(f), if t ≤ q
∅, if t > q

and F2(t) =

 Xq(f), if t ≤ q
Xt(f), if t > q

, (4.41)

for t ∈ IR, respectively. Note that Rq(f1) = C(T ), where T = Xq(f) and C(T ) denotes

the set of connected components of T . From the fact that Lψ = Inv(ψ◦), we have that

f1 = ψ◦(f1) =
∨
u{ρ̃(f1 | hR,q) | R ∈ C(T )}. But, according to Lemma 4.2.10(a) and (4.40),

ρ̃(f1 | hR,q) ∈ Sψ, for each R ∈ C(T ). Hence, f1 is sup-generated by Sψ. Note also that

f2 =
∨{δv,t | δv,t ≤ f2} =

∨{δv,t | δv,t ≤ f2, t ≥ q} =
∨
u{δv,t | δv,t ≤ f2, t ≥ q}, where

the last equality follows from the observation that
∨
ufα =

∨
fα, whenever the latter is

u.s.c. Therefore, f2 is also sup-generated by Sψ. To conclude the proof, note that it follows
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from (4.41) and Propositions 2.2.11(a) and 2.2.12(b) that Xt(f1 ∨u f2) = Xt(f1 ∨ f2) =

Xt(f1) ∪Xt(f2) = F1(t) ∪ F2(t) = Xt(f), for all t ∈ IR. Hence, f = f1 ∨u f2, so that f is

sup-generated by Sψ. Q.E.D.

From (4.40), it is clear that the family Sψ consists of all pulses of height at or above q,

along with the functions in Lψ that have exactly one regional maximum at level q.

We can now define the flat grayscale connectivity class Cψ associated with C, as the

family in Lψ given by

Cψ = {f ∈ Lψ | Xt(f) ∈ C, for all t ≤ q}. (4.42)

Indeed, we have the following result.

4.2.14 Proposition. The family Cψ in (4.42) defines a connectivity class in Lψ. �

Proof. First, note that the zero function is trivially in Cψ. In addition, by using Proposi-

tion 4.2.8(b), it is easy to see that Sψ ⊆ Cψ. This shows axioms (i) and (ii) of a connectivity

class. To show axiom (iii), consider a family {fα} of functions in Cψ such that
∧ψfα �= O.

As argued previously, this means that
∧
fα has a regional maximum at or above level q,

which implies that Xt(
∧
fα) =

⋂
Xt(fα) �= ∅, for all t ≤ q, where we have used Proposi-

tion 2.2.12(b). Since Xt(fα) ∈ C, for each fα, we have that
⋃
Xt(fα) ∈ C, for all t ≤ q.

Since C is compatible, it follows that
⋃
Xt(fα) ∈ C, for all t ≤ q. On the other hand,

from Propositions 2.2.11(a) and 4.2.6, we have that Xt(
∨
ufα) =

⋂
s<t

⋃
Xt(fα), for all

t ∈ IR. Hence, for x ∈ Xt(
∨
ufα), we have that γx(Xt(

∨
ufα)) = γx(

⋂
s<t

⋃
Xt(fα)) =⋂

s<t γx(
⋃
Xt(fα)) =

⋂
s<t

⋃
Xt(fα) = Xt(

∨
ufα) ⇒ Xt(

∨
ufα) ∈ C, for all t ≤ q, where

we have used the assumption that γx is ↓-continuous on F(E) and Proposition 2.2.10.

Therefore,
∨
ufα ∈ C, as required. Q.E.D.

Clearly, a function f ∈ Lψ is connected, according to Cψ, if all of its threshold sets

below level q are connected. Loosely speaking, this means that f is not allowed to have

any “disconnecting dips” below level q. The parameter q reflects the “richness” of the

connectivity. Smaller values of q allow more functions to be considered as being connected.

The connected components of a function f ∈ Lψ are associated with the connected

components, according to C, of the threshold set Xq(f) of f at level q. More precisely, if

γψx , x ∈ Sψ, is the connectivity opening associated with the connectivity class Cψ, then it
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Figure 4.10: An example of flat grayscale connectivity. The function f ∈ Lψ has two
connected components, according to C. The underlying connectivity class C is the usual
Euclidean topological connectivity on the indicated connected, closed and bounded inter-
val E.

is not difficult to see that

γψx (f) =
∨
u
{ρ̃(f | hR,f(R)) | R ∈ Rq(f) ∩ M∗(K(x))}, (4.43)

where K(x) = γ{v}(Xq(f)), if x = δv,t, t ≥ q, or K(x) = R, if x = f ∈ Funu(E, IR), such

that R(f) = {R}, f(R) = q. In other words, γψx (f) preserves the regional maxima of f

that are contained in the connected component of Xq(f) marked by the sup-generator x.

Clearly, the number of connected components of f , according to Cψ, equals the number of

binary connected components of Xq(f). Fig. 4.10 depicts the connected components of a

function f ∈ Lψ according to flat grayscale connectivity. The underlying connectivity class

C is the usual Euclidean topological connectivity on the indicated connected, closed and

bounded interval E.

The notion of flat grayscale connectivity applies to the discrete case as well. The main

ideas apply to this case, and certain assumptions are substantially simplified. More specifi-

cally, consider a finite subset E ⊆ ZZn, and the lattice L = Fun(E, T ) of all discrete functions

from E into T , where T = ZZ or T = {0, 1, . . . , R − 1}, for a finite integer R ≥ 2. Take

the underlying binary connectivity class C to be any strong connectivity class C ⊆ P(E).

A little thought reveals that all relevant results given earlier hold in this case.
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In practice, the discrete version of flat grayscale connectivity offers a potentially useful

tool for image segmentation. Figs. 4.11 and 4.12 depict two segmentation examples. Note

that the original images are first projected into lattice Lψ by applying the characteristic

opening ψ◦, given by (4.37). Note that the projected images are good approximations of the

originals. The image depicted in Fig. 4.11 contains several clusters of cornea cells. Despite

being a noisy image, the three “largest” grayscale connected components (the connected

components with the largest, in volume, subgraphs) provide a good segmentation of the

three main cell clusters. In Fig. 4.12, we depict four connected components of the Lenna

image, labelled as “hat highlight,” “shoulder highlight,” “right eye,” and “background ob-

ject,” which correspond to a highlight on the hat, a highlight on the shoulder, the right eye,

and a bright object in the background, respectively.

4.3 Second-Generation Connectivity

A second-generation connectivity class is a new connectivity class generated from an

existing one by means of a suitably defined operator [77–80]. In this section, we study two

classes of second-generation connectivity on complete lattices. The first one is based on

clustering elements of the original connectivity by means of a clustering operator. We give

an axiomatic formulation of clustering operators, and present a new example of a clustering

connectivity class based on morphological sampling operators. The second class is the dual,

in a sense, of the first. It is based on restricting a given connectivity class by means of a

contraction operator. This includes the case of a connectivity class restricted by openings,

previously studied for the binary case in [65, 66], which we generalize to atomic lattices.

4.3.1 Connectivity Based on Clustering

The basic idea pursued here is grouping the connected components of a given object

into “clusters.” One way to do this is by means of an operator that “joins” the connected

components to be clustered. More precisely, let L be a lattice and C be a connectivity class

in L. We say that A ∈ L is a cluster if ψ(A) ∈ C, for some suitably chosen operator ψ on L.

In addition, we say that A is composed of clusters A ∧ C, where C � ψ(A). See Fig. 4.13

for an illustration.

Next, we list intuitively desirable properties that a clustering operator ψ might possess.
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Figure 4.11: An example of segmentation of a cornea cells image by using flat grayscale
connectivity. Only the three “largest” connected components are depicted. In this example,
the image has 256 gray levels and q = 158. The underlying connectivity class C is the usual
8-adjacency connectivity.
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Figure 4.12: An example of segmentation of the Lenna image by using flat grayscale con-
nectivity. These connected components correspond to clearly identifiable regions, labelled
as “hat highlight,” “shoulder highlight,” “right eye,” and “background object.” In this ex-
ample, the image has 256 gray levels and q = 220. The underlying connectivity class C is
the usual 8-adjacency connectivity.
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(b)
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Figure 4.13: (a) A subset A of the 2-D Euclidean space that contains three connected
components. (b) The set ψ(A) = A ⊕ B is connected, so that A is a cluster. The set A is
composed of the single cluster A ∩ ψ(A).

4.3.1 Condition.

(i) ψ is increasing and extensive.

(ii) ψ is connectivity-preserving; i.e., ψ(C) ⊆ C.

(iii) If ψ(Aα) ∈ C, for all α, and
∧
Aα �= O, then ψ(

∨
Aα) ∈ C.

(iv) ψ does not create connected components; i.e., C � ψ(A) ⇒ A ∧ C �= O.

(v) ψ treats the clusters of A independently; i.e., C � ψ(A) ⇒ ψ(A ∧ C) = C. "

Item (i) implies that ψ(A) joins connected components of A (ψ is extensive) in a way that

preserves ordering (ψ is increasing). Item (ii) means that the only cluster of a connected A

is A itself. In loose terms, item (iii) means that union of intersecting clusters is a cluster as

well. Item (iv) is self-evident, whereas item (v) implies that A ∧C defines a cluster, for all

C �ψ(A). Since ψ(A) =
∨
C�ψ(A)C, item (v) also implies that ψ(A) =

∨
C�ψ(A) ψ(A∧C);

i.e., ψ(A) can be computed cluster by cluster.

4.3.2 Definition. Let L be a lattice with sup-generating family S, furnished with a connec-

tivity class C. An increasing and extensive operator ψ on L is said to be a strong clustering

if ψ(O) = O and

ψ(id ∧ γxψ) = γxψ, for all x ∈ S. (4.44)

"
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4.3.3 Proposition. An operator ψ on L satisfies all items of Condition 4.3.1 if and only

if ψ is a strong clustering. �

Proof. “⇐”: Note that, by definition, ψ satisfies items (i) and (v) of Condition 4.3.1.

To show item (iv), let x ≤ ψ(A) such that A ∧ γxψ(A) = O. Then, (4.44) implies that

ψ(O) = γxψ(A) �= O, which is a contradiction. Item (ii) follows from the observation that,

since A ∈ C and A ≤ ψ(A), A must be contained in one of the connected components of

ψ(A), which, from item (iv), must be the only one. This means that ψ(A) ∈ C, so that ψ is

connectivity-preserving. To show item (iii), pick a sup-generator x ≤ ∧Aα. We have that

x ≤ Aα ≤ ψ(Aα), for all α. Note that x ≤ ψ(Aα) ∈ C and Aα ≤ ∨Aα ⇒ ψ(Aα) ≤ ψ(
∨
Aα),

for all α, since ψ is increasing. It follows that ψ(Aα) ≤ γxψ(
∨
Aα), for all α. Hence,∨

Aα ≤ ∨ψ(Aα) ≤ γxψ(
∨
Aα), where the first inequality follows from the extensivity of

ψ. Since ψ does not create connected components, this means that γxψ(
∨
Aα) is the only

connected component of ψ(
∨
Aα); i.e., ψ(

∨
Aα) ∈ C.

“⇒”: From item (i), ψ is increasing and extensive. We show that ψ(O) = O. Suppose

that ψ(O) �= O. Then, we can pick a nonzero C�ψ(O), in which case item (iv) implies that

O∧C �= O, which is a contradiction. To verify (4.44), consider an A ∈ L. If x �≤ ψ(A), then

(4.44) holds, since ψ(O) = O, whereas if x ≤ ψ(A), (4.44) follows from item (v). Q.E.D.

By relaxing the requirements on a strong clustering, we introduce the notion of a clus-

tering.

4.3.4 Definition. An operator ψ on L that satisfies items (i)–(iii) of Condition 4.3.1 is

said to be a weak clustering, or simply a clustering. "

Clearly, every strong clustering is a clustering. However, a clustering may in general

create connected components and does not have to treat clusters independently.

The following proposition shows that, starting from a given connectivity class, a clus-

tering generates a new connectivity class, which produces a coarser PCC, as expected from

a clustering operation.

4.3.5 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C, and let ψ be a clustering on L.

(a) The family

Cψ = ψ−1(C) = {A ∈ L | ψ(A) ∈ C} (4.45)
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is a connectivity class in L.

(b) For A ∈ L, the PCC of A according to Cψ is coarser than the PCC of A according to

C; i.e.,

cA(x) = γx(A) ≤ γψx (A) = cψA(x), for all x ≤ A, (4.46)

where {γψx | x ∈ S} are the connectivity openings associated with Cψ. �

Proof. (a): Note that O ∈ Cψ and S ⊆ Cψ, since ψ is connectivity-preserving. Item (iii)

of Condition 4.3.1 means that, if Aα ∈ Cψ with
∧
Aα �= O, then

∨
Aα ∈ Cψ. Hence, Cψ

satisfies all the axioms of a connectivity class.

(b): Note that, since ψ is connectivity-preserving, we have that C ⊇ ψ(C) ⇒ Cψ =

ψ−1(C) ⊇ ψ−1(ψ(C)) ⊇ C. Hence, C ⊆ Cψ, so that γx(A) ≤ γψx (A), for all x ≤ A. Q.E.D.

The previous result says that the family of all clusters in L is a connectivity class.

Moreover, the PCC of A ∈ L, according to the new connectivity class Cψ, is coarser than

the PCC of A, according to the original connectivity class C. This is equivalent to the fact

that Cψ is richer than C; i.e., Cψ ⊇ C. We refer to Cψ as a clustering-based connectivity class.

We remark that the increasing and extensivity properties of ψ are not required for the

proof of Proposition 4.3.5. Moreover, for part (a), it is only necessary that ψ be connectivity-

preserving on the zero element and the sup-generators. However, a non-increasing and non-

extensive operator that does not preserve connectivity over all L can be hardly considered

to be a clustering.

In order to characterize the connected components associated with Cψ, we need to assume

that ψ is a strong clustering. This is clear from the following proposition.

4.3.6 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C. Let {γx | x ∈ S} and ρ be the connectivity openings and reconstruction

operator, respectively, associated with C. If ψ is a strong clustering on L, then:

(a) The connectivity openings {γψx | x ∈ S} associated with Cψ are given by

γψx (A) =

 A ∧ γxψ(A), if x ≤ A
O, if x �≤ A

, for x ∈ S, (4.47)

for A ∈ L.
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(b) If L is infinite ∨-distributive, the reconstruction operator ρψ associated with Cψ is

given by

ρψ(A |M) = A ∧ ρ(ψ(A) | A ∧M), (4.48)

for A,M ∈ L. �

Proof. (a): If x �≤ A, then there is nothing to prove; therefore, assume that x ≤ A. From

the extensivity of ψ, this implies that x ≤ ψ(A) ⇒ x ≤ γxψ(A) ⇒ x ≤ A ∧ γxψ(A). In

addition, (4.44) gives ψ(A ∧ γxψ(A)) ∈ C ⇒ A ∧ γxψ(A) ∈ Cψ. Hence, γψx (A) ≥ γψx (A ∧
γxψ(A)) = A ∧ γxψ(A). To show the reverse inequality, let C ∈ Cψ such that x ≤ C ≤ A.

We have that ψ(C) ∈ C. In addition, x ≤ C ≤ ψ(C) and ψ(C) ≤ ψ(A), by the extensivity

and increasing properties of ψ. Therefore, ψ(C) = γxψ(C) ≤ γxψ(A) ⇒ C ≤ A ∧ γxψ(A).

It then follows from (4.8) that γψx (A) ≤ A ∧ γxψ(A).

(b): From part (a), we have that ρψ(A | M) = ρψ(A | A ∧M) =
∨
x≤A∧M γ

ψ
x (A) =∨

x≤A∧M A∧γxψ(A). By the infinite ∨-distributivity of L, ρψ(A |M) = A∧∨x≤A∧M γxψ(A)

= A ∧ ρ(ψ(A) | A ∧M). Q.E.D.

The previous result says that, in the case of a strong clustering ψ, the connected com-

ponents of A, according to the clustering-based connectivity class Cψ, correspond to the

clusters A∧C, for C �ψ(A). Therefore, the PCC of A according to Cψ corresponds to the

segmentation of A into its clusters. It follows that A =
∨
C�ψ(A)A∧C; i.e., A is “composed”

of its clusters. In addition, if L is infinite ∨-distributive, ρψ recovers the clusters of A that

are marked by M ∧ A. Note that, when M = x ≤ A, in which case ρ(A | M) = γx(A),

(4.47) and (4.48) are in agreement. In general, these properties are not valid when ψ is only

a weak clustering.

When ψ is an ↓-continuous strong clustering on P(E), there is a useful characterization

of the grayscale reconstruction operator ρ̃ψ generated by ρψ. This is shown by the following

proposition.

4.3.7 Proposition. Let C be a connectivity class in a lattice P(E) and ρ̃ be the associated

grayscale reconstruction operator on Fun(E, IR), given by (4.21), with T = IR. If ψ is

an ↓-continuous strong clustering on P(E), the grayscale reconstruction operator ρ̃ψ on

Fun(E, IR) associated with Cψ is given by

ρ̃ψ(f | g) = f ∧ ρ̃(ψ(f) | f ∧ g), (4.49)

where ψ is the flat operator generated by ψ (see Section 2.2). �
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Proof. Let ρ and ρψ be the reconstruction operators associated with C and Cψ, respectively.

From Section 2.2, recall that ↓-continuity of ψ implies that Xt(ψ(f)) = ψ(Xt(f)), for all

t ∈ IR. By using Proposition 4.3.6(b), we have that

ρ̃ψ(f | g)(v) =
∨

{t ∈ IR | v ∈ ρψ(Xt(f) | Xt(g))}
=
∨

{t ∈ IR | v ∈ Xt(f) ∩ ρ(ψ(Xt(f)) | Xt(f) ∩Xt(g))}
=
∨

{t ∈ IR | v ∈ Xt(f)} ∧
∨

{t ∈ IR | v ∈ ρ(Xt(ψ(f)) | Xt(f ∧ g))}
= f(v) ∧ ρ̃ (ψ(f) | f ∧ g)(v), (4.50)

for all v ∈ E, which shows (4.49). Q.E.D.

The prototypical examples of clusterings are given by connectivity-preserving closings

and connectivity-preserving extensive dilations. This is shown next.

4.3.8 Proposition. Let L be a lattice furnished with a connectivity class C. A connectivity-

preserving closing φ on L is a clustering. �

Proof. Items (i) and (ii) of Condition 4.3.1 are satisfied by definition. To show that

item (iii) is also satisfied, consider a family {Aα} in L such that φ(Aα) ∈ C, for all α,

and
∧
Aα �= O. By the extensivity of φ, this implies that

∧
φ(Aα) ≥ ∧Aα �= O, so

that
∨
φ(Aα) ∈ C, from axiom (iii) of connectivity classes. We show that φ(

∨
Aα) =

φ(
∨
φ(Aα)), which implies that φ(

∨
Aα) ∈ C, since φ is connectivity-preserving. By the

extensivity of φ, we have that
∨
φ(Aα) ≥ ∨Aα, so that φ(

∨
φ(Aα)) ≥ φ(

∨
Aα), since φ is

increasing. On the other hand, and since φ is increasing, we have that
∨
φ(Aα) ≤ φ(

∨
Aα),

so that φ(
∨
φ(Aα)) ≤ φφ(

∨
Aα) = φ(

∨
Aα), by the idempotence of φ. Hence, φ(

∨
Aα) =

φ(
∨
φ(Aα)), as required. Q.E.D.

4.3.9 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C. Let δ be an extensive dilation on L such that δ(x) ∈ C, for every

x ∈ S.

(a) δ is a clustering on L.

(b) If L is infinite ∨-distributive, then δ is a strong clustering on L. �

Proof. (a): Item (i) of Condition 4.3.1 is satisfied by definition. We show that δ is

connectivity-preserving. Note that δ(O) = O, so that δ(O) ∈ C. Let A ∈ C � {O}. Note
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that δ(A) = δ(
∨
x∈S(A) x) =

∨
x∈S(A) δ(x), where S(A) = {x ∈ S | x ≤ A}. Since δ is

extensive, it follows that δ(A) = A ∨ δ(A) = A ∨ ∨x∈S(A) δ(x) =
∨
x∈S(A)[A ∨ δ(x)]. But

A, δ(x) ∈ C, for x ∈ S(A) ⊆ S, with A∧δ(x) ≥ x �= O, so that A∨δ(x) ∈ C, for all x ∈ S(A).

In addition,
∧
x∈S(A)[A ∨ δ(x)] ≥ A �= O, which implies that δ(A) =

∨
x∈S(A)[A ∨ δ(x)] ∈ C,

as required. Finally, to show item (iii) of Condition 4.3.1, let {Aα} be a family in L such

that δ(Aα) ∈ C, for all α, and
∧
Aα �= O. We have that

∧
δ(Aα) ≥ ∧Aα �= O, so that

δ(
∨
Aα) =

∨
δ(Aα) ∈ C.

(b): Since δ is increasing, extensive and δ(O) = O, to show that δ is a strong clustering

on L, we only need to show that δ satisfies (4.44), i.e.,

δ(A ∧ γxδ(A)) = γxδ(A), for all x ∈ S, A ∈ L. (4.51)

If x �≤ δ(A), the result is trivial. So, let x ≤ δ(A). Equation (4.51) then reduces to

δ(A ∧ C) = C, for all C � δ(A). In the following, we use the notation C � δA to indicate

that C is a connected component of A according to the connectivity class Cδ.
First, we show that, for a given C�δ(A), we have C = δ(C0), for some C0 � δA. Clearly,

C ≤ δ(A) ⇒ C = C ∧ δ(A) = C ∧ δ(∨{C ′ | C ′ � δA}) = C ∧ ∨{δ(C ′) | C ′ � δA} =∨{C ∧ δ(C ′) | C ′ � δA}, from the infinite ∨-distributivity of L. Note that δ(C ′) ∈ C and

δ(C ′) ≤ δ(A), for all C ′ � δA. From the maximality property of connected components (see

Definition 4.1.5), this implies that either δ(C ′) ≤ C or C ∧ δ(C ′) = O. We can then write

C =
∨{δ(C ′) | C ′ � δA, δ(C ′) ≤ C} = δ(K), where K =

∨{C ′ | C ′ � δA, δ(C ′) ≤ C}.

Note that this means that K ∈ Cδ. Again, from the maximality property of connected

components, this implies that the family {C ′ | C ′ � δA, δ(C ′) ≤ C} consists of a single

connected component C0 � δA, so that K = C0 and C = δ(C0).

To arrive at the desired result, it suffices to show that C0 = A∧δ(C0) (this can be shown

without assuming infinite ∨-distributivity for L, although our proof uses this assumption).

We have that A ∧ δ(C0) =
∨{C ′ | C ′ � δA} ∧ δ(C0) =

∨{C ′ ∧ δ(C0) | C ′ � δA}, from

the infinite ∨-distributivity of L. Now, we claim that C ′ ∧ δ(C0) �= O ⇒ C ′ = C0, for

all C ′ � δA. This follows from the fact that, as shown in part (a), δ is a clustering, so

that δ(C ′), δ(C0) ∈ C and δ(C ′) ∧ δ(C0) ≥ C ′ ∧ δ(C0) �= O imply that δ(C ′ ∨ C0) ∈ C ⇒
C ′ ∨ C0 ∈ Cδ ⇒ C ′ = C0, from the maximality property of connected components. Hence,

A ∧ δ(C0) = C0 ∧ δ(C0) = δ(C0). Q.E.D.

The previous proof is partially inspired by the proofs of similar results found in [79].

The infinite ∨-distributivity of L is essential in part (b). In fact, J. Serra gives an example
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of an extensive dilation that is not a strong clustering on the lattice L = Funu(IR, [0, 1]) of

u.s.c. functions from IR into [0, 1], which is not infinite ∨-distributive [79].

Clustering-based connectivity classes generated from dilations and closings are referred

to as dilation-based connectivity classes and closing-based connectivity classes, respectively.

In the following, we discuss specific examples of clustering-based connectivity classes.

4.3.10 Example.

(a) Consider the lattice L = P(E) of all subsets of a topological space E, with the points as

sup-generators, and let C be the family of topologically connected sets in E. Consider

the closing φ(A) = A, A ∈ P(E). From Proposition 3.1.3(b), φ is connectivity-

preserving and is thus a clustering (see Proposition 4.3.8). In particular, Cφ = {A ∈
P(E) | A ∈ C} is a closing-based connectivity class. However, φ can create connected

components. For instance, let A = {1/n | n ∈ ZZ+}. Then, φ(A) = A = {0} ∪ A.

But {0} is a connected component of φ(A) that does not touch A. Since φ creates

connected components, it is not a strong clustering.

(b) Consider either the lattice L = P(IRn) or the lattice L = P(ZZn), with the points as

sup-generators, and let C be a translation-invariant connectivity class in L. Consider

the dilation δ(A) = A ⊕ B on L, where B ∈ C and B contains the origin of IRn or

ZZn. It is easy to see that δ satisfies all conditions of Proposition 4.3.9. In particular,

Cδ = {A ∈ L | A ⊕ B ∈ C} is a dilation-based connectivity class. Since P(IRn) and

P(ZZn) are infinite ∨-distributive, δ is a strong clustering in both cases. See Fig. 4.14

for a particular example, where L = P(IR2), C is the family of topologically connected

sets in P(IR2), and B is a Euclidean disk that contains the origin of IR2. Note that

the PCC of A and the reconstruction of A from a marker M , according to Cδ, can

be easily computed using (4.47) and (4.48). On the other hand, Fig. 4.15 illustrates

the grayscale reconstruction operator ρ̃ δ on Fun(IR, IR), associated with Cδ, when

L = P(IR), C is the family of topologically connected sets in P(IR), and B is a line

structuring element.

(c) Consider the lattice L = P(IRn), with the points as sup-generators, and let C be

the family of topologically path-connected subsets of IRn, with the usual topology.

Consider the line closing φL(A) = A•L, where L = L(x, y) is the line segment joining

the points x, y ∈ IRn. It is easy to see that any point v ∈ A•L must lie in a line
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Figure 4.14: An example of a dilation-based connectivity class Cδ. (a) A subset A of the
2-D Euclidean space. (b) The dilation δ(A) = A ⊕ B. (c) The PCC of A according to Cδ.
Note that γδx(A) = A ∩ γx(A ⊕ B). (d) A marker M superimposed on A. (e) The marker
M ∩A superimposed on δ(A) = A⊕B. (f) The reconstruction ρδ(A |M) according to Cδ.
Note that ρδ(A |M) = A∩ ρ(A⊕B |M ∩A), and that the cluster at the top-left corner of
(a) is not part of the reconstruction, even though the dilation of that cluster intersects M .
It is instructive to compare the result in (f) to that of Fig. 4.6(b).

segment L′(v, w), with w ∈ A, such that L′ ⊆ A•L. Using this characterization,

it is easy to show that φL is connectivity-preserving; hence, φL is a clustering. In

particular, CφL = {A ∈ P(IRn) | φL(A) ∈ C} is a closing-based connectivity class. ♦

Contrary to what might be expected, and despite Example 4.3.10(c) above, structural

closings φB(A) = A•B are not in general connectivity-preserving, even if B is connected.

See Fig. 4.16 for an illustration (this example is similar to the one in [34, Fig. 9.19]). In

addition, the intersection of connectivity-preserving closings may not be connected. For

example, consider the lattice L = P(IR2), furnished with the Euclidean topological connec-

tivity, and let φ be the intersection of two structural line closings: φ(A) = (A•L1)∩(A•L2),
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Figure 4.15: An example of grayscale reconstruction associated with a dilation-based con-
nectivity class Cδ, generated by means of a dilation δ(A) = A⊕B, where B is the indicated
line structuring element. (a) Original image f and a marker g. (b) The flat grayscale dila-
tion δ(f) = f⊕B. (c) The grayscale reconstruction ρ̃δ(f | g), according to Cδ. The original
connectivity class C is the usual topological connectivity of the real line. It is instructive to
compare the result in (c) to that of Fig. 4.7(b).

where L1 and L2 are the two perpendicular line structuring elements depicted in Fig. 4.17.

As we have discussed in Example 4.3.10(c), φL1(A) = A•L1 and φL2(A) = A•L2 are

connectivity-preserving; however, φ = φL1 ∧ φL2 is not.

An interesting example of a clustering-based connectivity class is provided by operators

associated with the theory ofmorphological sampling. In the following, we outline some basic

aspects of this theory. For a more general treatment, the reader is referred to [33, 34, 83].

Consider the lattice L = P(IRn), with the points as sup-generators. Let S ⊂ IRn be a

regular grid in IRn, given by S = {k1u1 + · · · + knun | ki ∈ ZZ}, where {ui} are linearly

independent vectors in IRn. Set S is known as the sampling grid. Let C ⊂ IRn be a bounded

set such that 0 ∈ C, C ∩ S = {0} and

S ⊕ C = IRn, (4.52)
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A B A B²

Figure 4.16: Example of a structural closing that is not connectivity-preserving. Note that
A and B are connected, but A•B is not. Topological connectivity on P(IR2) is assumed.

Figure 4.17: A subset A ∈ P(IR2) and its closing φ(A) = (A•L1) ∩ (A•L2). Note that A
is connected, but φ(A) is not.

where 0 is the origin in IRn. The set C is known as the sampling element. One can show

that the operator σ(A) = {s ∈ S | Cs ∩ A �= ∅}, known as the sampling operator, defines a

dilation from P(IRn) into P(S). The corresponding adjoint erosion from P(S) into P(IRn),

called the interpolation operator, is given by ξ(V ) =
(⋃
s∈S�V Cs

)c. The sampling operator

followed by the interpolation operator produces an operator on P(IRn), given by

π(A) = ξσ(A) =

( ⋃
s∈S

{Cs | Cs ∩A = ∅}
)c
, (4.53)

which is called the approximation closing.

In practice, one takes the sampling element to be of the form:

C = {x1u1 + · · · + xnun | −a < xi < a}, 1/2 < a ≤ 1. (4.54)
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Figure 4.18: Morphological sampling and interpolation.

Fig. 4.18 illustrates this morphological sampling scheme, with the sampling element being

chosen as in (4.54).

The following result gives a sufficient condition for the approximation closing π to be a

clustering.

4.3.11 Proposition. Consider the lattice P(IRn), furnished with a connectivity class C.

Let C be a sampling element such that

Cs � (R⊕ C) ∈ C, for all s ∈ S, R ⊆ S. (4.55)

Then, the approximation closing π, given by (4.53), defines a clustering on P(IRn). �

Proof. From Proposition 4.3.8, it suffices to show that π is connectivity-preserving. From

(4.52) and (4.53), we have that π(∅) =
(⋃
s∈S{Cs | Cs ∩ ∅ = ∅})c =

(⋃
s∈S Cs

)c = (S ⊕
C)c = (IRn)c = ∅. Hence, π(∅) ∈ C. Let us now consider an element A ∈ C � {∅}. From the

extensivity of π, we have π(A) ⊇ A �= ∅, so that we can pick a point v ∈ π(A). Now, (4.52)
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guarantees that we can find a point s(v) ∈ S, which depends on v, such that v ∈ Cs(v).
Note also that, since v ∈ π(A), we have that Cs(v) ∩A �= ∅; otherwise, Cs(v) ∩ π(A) = ∅, as

it is clear from (4.53), in which case v /∈ π(A). Define

D(v) = Cs(v) � (π(A))c = Cs(v) � (R⊕ C), (4.56)

where R = {s ∈ S | Cs ∩ A = ∅}. From condition (4.55), we have that D(v) ∈ C. The

following are some additional (and easy to prove) facts about D(v):

v ∈ D(v), (4.57)

D(v) ⊆ π(A), (4.58)

A ∩D(v) = A ∩ Cs(v) �= ∅ ⇒ A ∪D(v) ∈ C. (4.59)

From (4.57), it follows that π(A) =
⋃
v∈π(A){v} ⊆ ⋃v∈π(A)D(v). On the other hand,

(4.58) implies that
⋃
v∈π(A)D(v) ⊆ π(A). Hence, π(A) =

⋃
v∈π(A)D(v), so that π(A) =

A ∪ π(A) = A ∪ ⋃v∈π(A)D(v) =
⋃
v∈π(A)(A ∪ D(v)). But

⋂
v∈π(A)(A ∪ D(v)) ⊇ A �= ∅.

From (4.59) and axiom (iii) of connectivity classes, this implies that π(A) ∈ C. Q.E.D.

Condition (4.55) is easy to check in practice. In addition, if the connectivity is translation-

invariant, then (4.55) can be replaced by C � R ⊕ C ∈ C, for every R ⊆ S. In practice,

however, we must consider only small finite subsets R ⊆ S, which consist of points r for

which C ∩ Cr �= ∅. This simplifies matters even further. For instance, in the case of the

sampling element given by (4.54), one needs to consider only combinations of the nearest

neighbors to the origin, and some cases are redundant, due to symmetry. In particular, it

is very easy to check that the sampling element in (4.54) satisfies condition (4.55) when C
corresponds to the usual topological connectivity.

We refer to Cπ = {A ∈ P(IRn) | π(A) ∈ C} as the sampling-based connectivity class gen-

erated by π. Fig. 4.19 illustrates an example of this connectivity class in the 2-D Euclidean

space. It is easy to see that condition (4.55) is satisfied in this case. Although A is not

connected in the usual topological sense, it is connected in Cπ, since π(A) is connected in

the usual topological sense. Clearly, the coarser the sampling grid and the sampling element

are, the more subsets of IR2 are connected, in the sense of the associated sampling-based

connectivity class.

As shown by Example 4.3.10(a), there exist connectivity-preserving closings that create

connected components, and therefore are not strong clusterings. The question thus arises



112 Connectivity on Complete Lattices
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Figure 4.19: An example of a sampling-based connectivity class Cπ. (a) A subset A of the
2-D Euclidean space that is not connected in the usual topological sense. (b) However, A
is connected in Cπ, since π(A) is connected in the usual topological sense.

as to which connectivity-preserving closings φ are strong clusterings. It turns out that such

closings can be characterized by means of the operators ξx = γxφ, for x ∈ S. To show this,

we first need the following lemma.

4.3.12 Lemma. Let L be a lattice with a sup-generating family S, furnished with a con-

nectivity class C, and let φ be a closing on L such that φ(O) = O. Then, φ is connectivity-

preserving if and only if the connected components of φ(A) are closed, for every A ∈ L; i.e.,

φ(C) ⊆ C ⇔ φγxφ = γxφ, x ∈ S. (4.60)

�

Proof. “⇒”: Let A ∈ L. If x �≤ φ(A), then the right-hand side follows from the fact that

φ(O) = O. So, let x ≤ φ(A). By the extensivity of φ, we have that φγxφ(A) ≥ γxφ(A).

On the other hand, γxφ(A) ∈ C ⇒ φγxφ(A) ∈ C, by hypothesis, and x ≤ γxφ(A) ⇒ x ≤
φγxφ(A). This implies that φγxφ(A) ≤ γxφ(A). Hence, φγxφ(A) = γxφ(A).

“⇐”: We have that φγxφ = γxφ ⇒ φγxφγx = γxφγx. But φγxφγx ≤ φφφγx = φγx,

and φγxφγx ≥ φγxγxγx = φγx, so that φγx is idempotent; i.e., φγxφγx = φγx. Therefore,

γxφγx = φγx, for x ∈ S. Now, we have that φ(O) = O ∈ C. So, let A ∈ C � {O}, and pick a

sup-generator x ≤ A. We have that γx(A) = A, so γxφ(A) = γxφγx(A) = φγx(A) = φ(A);

i.e., φ(A) ∈ C. Q.E.D.



4.3 Second-Generation Connectivity 113

4.3.13 Proposition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C, and let φ be a closing on L such that φ is connectivity-preserving and

φ(O) = O. Then, φ is a strong clustering if and only if the operators ξx = γxφ are strong

filters, for all x ∈ S. �

Proof. “⇒”: From Proposition 2.2.3, ξx is a sup-filter, for all x ∈ S. We need to show

that ξx is an inf-filter as well; i.e., we need to show that γxφ = γxφ(id∧ γxφ), for all x ∈ S.

But this follows by applying γx on both sides of (4.44).

“⇐”: Since ξx is an inf-filter, we have that γxφ = γxφ(id ∧ γxφ) ≤ φ(id ∧ γxφ). On

the other hand, from Lemma 4.3.12, we have that φ(id ∧ γxφ) ≤ φγxφ = γxφ. Hence,

γxφ = φ(id ∧ γxφ), for all x ∈ S, which shows (4.44). Hence, φ is a strong clustering.

Q.E.D.
A class of connectivity-preserving closings, known as partition closings, was introduced

by G. Matheron and J. Serra in [77] for the binary case, and extended to the general lattice

case by J. Serra in [78]. The following definition is adapted from [78].

4.3.14 Definition. Let L be a lattice with sup-generating family S, furnished with a

connectivity class C. A partition closing φ is a closing on L such that φ(O) = O, φ is

connectivity-preserving, and

φ =
∨
x∈S
φ(id ∧ γxφ). (4.61)

"

We have the following result.

4.3.15 Proposition. Let L be a strongly semi-atomic lattice. A closing φ on L is a strong

clustering if and only if φ is a partition closing. �

Proof. “⇐”: From Definition 4.3.14, it is clear that φ is increasing and extensive, and

φ(O) = O. We need to show (4.44). Since φ is connectivity-preserving, we have that

φ(id∧γxφ) ≤ φγxφ = γxφ, by Lemma 4.3.12. To show the reverse inequality, let A ∈ L and

x ∈ S. If x �≤ φ(A), the desired result follows from the fact that φ(O) = O. So, let x ≤ φ(A)

and take y to be any sup-generator such that y ≤ γxφ(A). Note that γyφ(A) = γxφ(A).

From (4.61), we have that y ≤ φ(A) =
∨
x′∈S φ(A ∧ γx′φ(A)). From the strong semi-

atomicity of L, there must be an x′ ∈ S such that y ≤ φ(A ∧ γx′φ(A)) ≤ γx′φ(A). This

implies that γx′φ(A) = γyφ(A) = γxφ(A). Hence, y ≤ φ(A ∧ γxφ(A)), for all y ≤ γxφ(A),
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so that γxφ(A) =
∨{y | y ≤ γxφ(A)} ≤ φ(A ∧ γxφ(A)). Applying γx on both sides, we get

that γxφ(A) ≤ γxφ(A ∧ γxφ(A)). Hence, γxφ = γxφ(id ∧ γxφ), for all x ∈ S, as required.

“⇒”: By definition, φ(O) = O and, as we showed in Proposition 4.3.3, φ is connectivity-

preserving. In addition, from (4.44), we have that φ =
∨
x∈S γxφ =

∨
x∈S φ(id∧γxφ), which

shows (4.61). Hence, φ is a partition closing. Q.E.D.

We remark that the argument used above for the proof of the converse implication is

a generalization, to the case of a strongly semi-atomic lattice, of the argument used in

the proof of Proposition 7.8 in [77]. In that reference, iterative algorithms are given that

generate a partition closing from a given connectivity-preserving closing, in the case of the

binary lattice L = P(E), with finite E. Since this lattice is strongly semi-atomic, this

provides a general method to “strengthen” a given discrete binary connectivity-preserving

closing to obtain a strong clustering.

4.3.2 Connectivity Based on Contraction

A contraction ξ is any increasing and anti-extensive operator on a lattice L (this follows

the terminology adopted, for different purposes, in [65]). We say that A ∈ L is “stable”

if ξ(A) = A; i.e., if A is invariant to the contraction ξ. A new connectivity class can

be generated from a given connectivity class by means of a contraction. The resulting

connectivity class contains the least element, the sup-generators, and the stable connected

elements, and is thus a restricted version of the given connectivity class. Some of the results

presented in this subsection are based on the work by C. Ronse [65, 66]. However, we extend

Ronse’s results from binary lattices to general atomic lattices (and to more general lattices

if possible), and provide new examples that are made possible by this extension.

We have the following result.

4.3.16 Proposition. Consider an atomic lattice L with sup-generating family S, furnished

with a connectivity class C. Let ξ be a contraction on L. The family

Cξ = {O} ∪ S ∪ {A ∈ C | ξ(A) = A} (4.62)

is a connectivity class in L that is smaller than C (i.e., Cξ ⊆ C). �

Proof. From (4.62), it is clear that Cξ ⊆ C. In addition, Cξ satisfies axioms (i) and (ii)

of connectivity classes. We now show axiom (iii). Consider a family {Cα | α ∈ J} in Cξ.
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(a) (b)

A

B

�( )A A B� ·

Figure 4.20: An example of an opening-based connectivity class Cθ. (a) A set A in the
2-D Euclidean space that is connected in the usual topological sense. (b) The set A is not
connected in Cθ, since A �= A◦B.

Let D = {A ∈ C | ξ(A) = A}. Since O ∈ D, we can write Cα ∈ S, for α ∈ J1, and

Cα ∈ D � S, for α ∈ J � J1, where J1 ⊆ J . Note that, since the elements of S are atoms,

we have

x ∧A �= O ⇒ x ∧A = x ⇒ A = x or x ≤ A �∈ S, (4.63)

for all x ∈ S and A ∈ L. Now, suppose that
∧
α∈J Cα �= O. It follows from (4.63) that Cα =

x, for α ∈ J1, where x is a fixed element of S. If J1 = J , we have that
∨
α∈J Cα = x ∈ Cξ,

and we are done. Otherwise, it follows from (4.63) that
∨
α∈J Cα =

∨
α∈J�J1

Cα. But, for all

α ∈ J�J1, we have ξ(Cα) = Cα, so that
∨
α∈J�J1

Cα =
∨
α∈J�J1

ξ(Cα) ≤ ξ(∨α∈J�J1
Cα) ⇒∨

α∈J�J1
Cα = ξ(

∨
α∈J�J1

Cα), by using the fact that ξ is increasing and anti-extensive.

We also have Cα ∈ C, for all α ∈ J � J1, with
∧
α∈J�J1

Cα ≥ ∧α∈J Cα �= O, so that∨
α∈J�J1

Cα ∈ C, since C is a connectivity class. It follows that
∨
α∈J Cα =

∨
α∈J�J1

Cα ∈
D ⇒ ∨α∈J Cα ∈ Cξ, as required. Q.E.D.

The connectivity class Cξ is referred to as a contraction-based connectivity class. A

contraction-based connectivity class Cξ restricts the original connectivity class C by exclud-

ing all connected elements that are not stable, according to ξ.

In the case in which ξ is an opening ξ = θ on L, the connectivity class Cθ defined

by (4.62), with ξ = θ, is referred to as the opening-based connectivity class generated

by θ. In the special case in which L = P(E), with the points as sup-generators, this

connectivity class is the one discussed in [65, 66]. Fig. 4.20 illustrates this case. In this

example, L = P(IR2), the sup-generators are the points in IR2, and θ is taken to be the
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structural opening θ(A) = A◦B, with B being a two-dimensional disk. Although the set A

is connected in the usual topological sense, it is not connected in Cθ, since A is not invariant

to θ. Therefore, one-piece objects with “bottlenecks” are not considered connected in the

new connectivity class (this affords robustness against noise). Clearly, the larger the radius

of B is, the fewer subsets of IR2 are connected in Cθ.
Under additional assumptions, we can characterize the connectivity openings of the

opening-based connectivity class Cθ defined by (4.62), with ξ = θ. First, we need the

following definition.

4.3.17 Definition. Consider a lattice L with sup-generating family S, furnished with a

connectivity class C. An opening θ on L is said to be locally invariant with respect to C if,

for each A ∈ L,

θ(A) = A ⇒ θγx(A) = γx(A), ∀x ∈ S. (4.64)
"

In other words, given an element A that is invariant to θ, all connected components of

A must also be invariant to θ. This can also be expressed by writing θγxθ = γxθ, for all

x ∈ S. We now have the following characterization of locally invariant openings on infinite

∨-distributive lattices.

4.3.18 Proposition. Consider an infinite ∨-distributive lattice L, furnished with a con-

nectivity class C. An opening θ on L is locally invariant with respect to C if and only if

there exists a family B ⊆ C such that

θ(A) = θB(A) =
∨

{B ∈ B | B ≤ A}. (4.65)

�

Proof. “⇒”: Let θ be locally invariant with respect to C; we show that θ = θB, with

B = C ∩ Inv(θ). Let C = γxθ(A), where x ≤ θ(A). Since θ(A) ∈ Inv(θ) and θ is locally

invariant, we have that C ∈ Inv(θ). But, we also have C ∈ C, so that C ∈ C ∩ Inv(θ) = B.

Since C ≤ A and θB(A) =
∨{B ∈ B | B ≤ A}, we have x ≤ C ≤ θB(A), so that

θ(A) =
∨
x≤θ(A) x ≤ θB(A). To show the reverse inequality, let B ∈ B such that B ≤ A.

We have B = θ(B) ≤ θ(A), so that θB(A) ≤ θ(A). Hence, θ(A) = θB(A).

“⇐”: Let θ = θB, for some B ⊆ C. We show that θ is locally invariant with respect to C;

i.e., if A = θB(A) and C � A, then C = θB(C). Let B(C) = {B ∈ B | B ≤ A, C ∧B �= O}.
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We have that

C ≤ A⇒ C = C ∧A = C ∧
∨

{B | B ∈ B, B ≤ A}
=
∨

{C ∧B | B ∈ B, B ≤ A}
=
∨

{C ∧B | B ∈ B(C)}, (4.66)

where we have used the infinite ∨-distributivity of L. Now, let B ∈ B(C). This implies that

B ∈ C, with C ∧B �= O. But C ∈ C, so that C ∨B ∈ C. But, we also have that C ∨B ≤ A
and C �A; hence, C ∨B = C ⇒ C ≥ B ⇒ C ∧B = B. From (4.66), we can thus write

C =
∨

{B | B ∈ B(C)} ≤
∨

{B ∈ B | B ≤ C} = θB(C). (4.67)

But, of course, we also have that θB(C) ≤ C, which establishes the desired equality. Q.E.D.

Proposition 4.3.18 extends the corresponding binary result in [65] to infinite ∨-distributive

lattices. Note that the infinite ∨-distributivity of L is only required for the converse impli-

cation. The following is a useful corollary.

4.3.19 Corollary. Let L be an infinite ∨-distributive lattice, with sup-generating family S,

furnished with a connectivity class C. Let δ be a dilation on L such that δ(x) ∈ C, for all

x ∈ S, and let ε be the adjunct erosion on L. Then, the adjunctional opening θ = δε is

locally invariant with respect to C. �

Proof. From the fact that (ε, δ) is an adjunction, we have that ε(A) =
∨
x∈S{x | x ≤

ε(A)} =
∨
x∈S{x | δ(x) ≤ A}. Hence, θ(A) = δε(A) = δ(

∨
x∈S{x | δ(x) ≤ A}) =∨

x∈S{δ(x) | δ(x) ≤ A} = θB(A), with B = {δ(x) | x ∈ S} ⊆ C. The desired result

then follows from Proposition 4.3.18. Q.E.D.

For instance, consider a translation-invariant connectivity class C in L = P(IRn). If B is

a connected structuring element, then, from Corollary 4.3.19, it is clear that the structural

opening θB(A) = A◦B is locally invariant with respect to C. The assumption that B is

connected is essential. For instance, consider the Euclidean topological connectivity on IRn,

and take B = {v1, v2}, where v1, v2 are two distinct points in IRn. Let A = R1 ∪R2, where

R1 and R2 are parallel lines going through points v1 and v2, respectively. Then, θB(A) = A,

so that A is invariant to θB, but θB(R1) = θB(R2) = ∅; i.e., the connected components R1

and R2 of A are not invariant to θB.
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Proposition 4.3.18 and Corollary 4.3.19 provide ways for building openings that are

locally invariant with respect to a given connectivity class. The usefulness of such openings

becomes clear from the following result.

4.3.20 Proposition. Consider an atomic lattice L with sup-generating family S, furnished

with a connectivity class C. Let {γx | x ∈ S} and ρ be the connectivity openings and the

reconstruction operator, respectively, associated with C. Let θ be an opening on L that

is locally invariant with respect to C, and let Cθ be the opening-based connectivity class

generated by θ.

(a) The connectivity openings {γθx | x ∈ S} associated with Cθ are given by

γθx(A) =


γxθ(A), if x ≤ θ(A)

x, if θ(A) �≥ x ≤ A
O, if x �≤ A

, for x ∈ S, (4.68)

for A ∈ L.

(b) The reconstruction operator ρθ associated with Cθ is given by

ρθ(A |M) = (A ∧M) ∨ ρ(θ(A) |M), (4.69)

for A,M ∈ L. �

Proof. (a): From the definition of connectivity openings, we have that γθx(A) =
∨{C ∈

Cθ | x ≤ C ≤ A}. Let us consider three cases. If x �≤ A, then clearly γθx(A) = O. If x ≤ A,

but x �≤ θ(A), consider C ∈ Cθ such that x ≤ C ≤ A. We have θ(C) ≤ θ(A), so that we

cannot have C = θ(C); i.e., C �∈ C ∩ Inv(θ). Hence, C must be a sup-generator. By the

atomicity of L, we must have C = x, so that γθx(A) = x. Finally, if x ≤ θ(A), we have that

x ≤ γxθ(A) ≤ A. But γxθ(A) ∈ Cθ, since γxθ(A) ∈ C, and γxθ(A) ∈ Inv(θ), by the local-

invariance of θ with respect to C. Hence, we have that γxθ(A) ≤ γθx(A). To show the reverse

inequality, we consider only the case when γθx(A) ∈ C ∩ Inv(θ) (if γθx(A) is a sup-generator,

then the direct inequality clearly implies that γxθ(A) = γθx(A) = x). From γθx(A) ∈ C, we

have γθx(A) = γxγθx(A), whereas, from γθx(A) ∈ Inv(θ), we have γθx(A) = θγθx(A). It follows

that γθx(A) = γxθγθx(A) ≤ γxθ(A), since γx is anti-extensive and γxθ is increasing.

(b): The result follows from part (a) and the fact that ρθ(A |M) =
∨
x≤M γ

θ
x(A). Q.E.D.
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Figure 4.21: (a) A set A in the 2-D Euclidean space. (b) The structural opening θ(A) =
A◦B. (c) The PCC of A according to the opening-based connectivity class generated by
θ. The gray regions correspond to the residue A � θ(A), where the PCC consists of a
pulverization into points.

Note that, when M = x, (4.69) reduces to (4.68), as would be expected in an atomic

lattice (see remarks following (4.18)). Note also that, in the standard binary case (i.e., when

L = P(E) with the points in E as sup-generators), (4.68) can be written as

γθ{v}(A) =


γ{v}θ(A), if v ∈ θ(A)

{v}, if v ∈ A� θ(A)

∅, if v �∈ A
. (4.70)

Equation (4.68) and its binary counterpart (4.70) simply say that the connected com-

ponent, according to the opening-based connectivity class generated by an opening θ, of

an element A marked by x, is the connected component, according to the original connec-

tivity class, of θ(A), marked by x, if x ≤ θ(A), or x itself, if x ≤ A but x �≤ θ(A). This

“breaks up” connected elements in C by means of the opening θ. An example is depicted

in Fig. 4.21. Here, we consider the 2-D Euclidean case, with θ being the structural opening

θ(A) = A◦B, where B is a two-dimensional disk. According to Corollary 4.3.19, this

opening is locally invariant.

The requirement that θ be locally invariant is not needed for generating an opening-

based connectivity class (see Proposition 4.3.16). This requirement is only needed in order

to express the connectivity opening γθx in terms of the connectivity opening γx, by means of

(4.68). As a matter of fact, if θ is not locally invariant, it can be shown that the opening-

based connectivity class generated by θ is identical to the one generated by the locally
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Figure 4.22: (a) A B-open image A in Lθ, where B is a square structuring element. (b) The
structural opening θ′(A) = A◦B′, where B′ is a square structuring element that is larger
than B. (c) The PCC of A according to the opening-based connectivity class Cθ′ . The gray
regions depict the union of the sup-generators of Lθ that are in A, but not in θ′(A).

invariant opening θB, given by (4.65), with B = C ∩ Inv(θ). In this case, (4.68) holds with

θ being replaced by θB (the proof of this fact is straightforward).

As an application of the results presented in this section, we give below an example of

an opening-based connectivity class in a non-binary atomic lattice.

4.3.21 Example. Consider the θ-invariant lattice Lθ = Inv(θ), where θ(A) = A◦B on

L = P(E) (see Section 4.2), and let Cθ be the connectivity class in Lθ, given by Proposi-

tion 4.2.3 (this requires that Bv ∈ C, for all v ∈ E). Recall that Lθ is sup-generated by

the family Sθ = {Bv | v ∈ E}, so that Lθ is clearly an atomic lattice. Then, given an

opening θ′ on Lθ, the family Cθ′ = {∅}∪Sθ∪ [Cθ∩ Inv(θ′)] is the opening-based connectivity

class in Lθ generated by θ′. In particular, consider a structural opening θ′(A) = A◦B′,

where B′ ∈ C and B′ is B-open, which implies that Inv(θ′) ⊆ Inv(θ) (for a proof of this

fact, see [34, Thm. 3.24]). Hence, θ′(Lθ) = Inv(θ′) ⊆ Inv(θ) = Lθ, so that θ′ defines an

opening on Lθ. Furthermore, even though Lθ is not infinite ∨-distributive (so we cannot

use Proposition 4.3.18), it is easy to see that θ′ is locally invariant with respect to C. Hence,

we can use (4.68) to compute the connectivity openings of the opening-based connectivity

class Cθ′ . Fig. 4.22 illustrates this, where Lθ consists of the B-open subsets of IR2, with B

being a square structuring element, Cθ corresponds to the B-open topologically connected

sets in the Euclidean topology of IR2, and B′ is a square structuring element that is larger

than B. Note that the zones of the PCC may overlap, but the infimum between each pair

of zones is zero in lattice Lθ, as required. ♦
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4.4 Hyperconnectivity

Axiom (iii) of connectivity classes requires that the supremum of “overlapping” con-

nected elements (i.e., connected elements that have nonzero infimum) must be connected

(see Definition 4.1.2). In some cases, this may be too restrictive. For example, this is true

when one tries to define a connectivity class in the function lattice Fun(E, T ).

In Section 4.2, we have seen that there is a way to soften this constraint, by introducing

new lattices where the infimum operation is suitably “modified.” An alternative approach

is the concept of hyperconnectivity, proposed by J. Serra in [78, 79]. The hyperconnectivity

approach modifies axiom (iii), by introducing an “overlap” operation that generalizes the

nonzero infimum criterion. The disadvantage of this approach is that it loses much of the

structure and strength of the theory of connectivity classes. The benefits come from the

possibility of defining examples of connectivity on usual lattices such as P(E) or Fun(E, T ),

using meaningful overlap criteria, which could not be otherwise achieved if one restricts

oneself to connectivity classes. In particular, we show that graph-theoretical k-connectivity,

and fuzzy level connectivity and fuzzy topographic connectivity, have natural formulations

as hyperconnectivities on P(E) and Fun(E, T ), respectively.

In this section, we study this alternative approach to connectivity. Most of the material

presented here is new, although it builds on the original idea proposed by J. Serra in [78, 79].

4.4.1 Hyperconnectivity Classes

Below, we provide an axiomatization of hyperconnectivity, based on an “overlap” crite-

rion for families in a lattice. Overlap criteria extend the usual criterion of nonzero infimum

adopted in the case of connectivity classes.

4.4.1 Definition. An overlap criterion in a lattice L is a mapping ⊥: P(L) → K, where

K = {O⊥, I⊥} is a bi-valued chain, such that:

A ⊆ B ⇒ ⊥(A) ≥ ⊥(B). (4.71)

A family A ⊆ L is said to be overlapping if ⊥ (A) = I⊥; otherwise, it is said to be non-

overlapping. "

The condition expressed by (4.71) conveys the natural requirement that a non-overlapping

family cannot possibly become overlapping by adding more elements. For notational conve-
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nience, we write A1 ⊥ A2 if ⊥ ({A1, A2}) = I⊥, and A1 �⊥ A2 if ⊥ ({A1, A2}) = O⊥. Recall

that definitions of overlapping were already introduced in Chapter 3, in connection of fuzzy

level connectivity and fuzzy topographic connectivity; it is clear that those are examples of

overlap criteria (see also remarks after Example 4.4.3 below).

We now define hyperconnectivity classes in a lattice L.

4.4.2 Definition. Let L be a lattice with sup-generating family S, furnished with an over-

lap criterion ⊥. A family H ⊆ L is called a hyperconnectivity class in L if the following

conditions are satisfied:

(i) O ∈ H,

(ii) S ⊆ H,

(iii) for a family {Hα} in H such that ⊥({Hα}) = I⊥, we have that
∨
Hα ∈ H.

The family H generates a hyperconnectivity on L, and the elements of H are said to be

hyperconnected. "

It is clear that a connectivity class is a special case of a hyperconnectivity class with the

“standard” overlap criterion

⊥∧ (A) =

 I⊥, if
∧A �= O

O⊥, otherwise
. (4.72)

Next, we give a few examples of hyperconnectivity classes.

4.4.3 Example.

(a) Let L be a lattice with sup-generating family S, furnished with a connectivity class C.

Let δ be an extensive dilation on L such that δ(x) ∈ C, for every x ∈ S, and consider

the overlap criterion

⊥ ({Aα}) =

 I⊥, if
∧
δ(Aα) �= O

O⊥, otherwise
. (4.73)

It is easy to verify that the family H = δ−1(C) is a hyperconnectivity class in L. This

is also the dilation-based connectivity class generated by δ (see Section 4.3.1).
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(b) Let L = P(ZZn), with the points as sup-generators, furnished with the overlap criterion

⊥ ({Aα}) =

 I⊥, if |⋂Aα | ≥ k

O⊥, otherwise
, (4.74)

where k is a positive integer. In other words, sets in ZZn overlap if they have at

least k points in common. Let G = (ZZn, L) be a graph, and recall the definition of

graph-theoretic k-connectivity in Section 3.2. It is easy to verify that

H = {A ⊆ ZZn | A is a point or A is k-connected in G} (4.75)

is a hyperconnectivity class in P(ZZn).

(c) (Flat τ -hyperconnectivity). Let L = Fun(E, T ) with the pulses as sup-generators.

Recall the definition of the threshold operators Yτ (f) = {v ∈ E | f(v) �≤ τ}, for

τ ∈ T . Consider the overlap criterion

⊥τ ({fα}) =

 I⊥, if
⋂
α{Yτ ′(fα) | Yτ ′(fα) �= ∅} �= ∅, for all τ ′ �≥ τ

O⊥, otherwise
, (4.76)

where τ ∈ T � {O}. In other words, functions in Fun(E, T ) overlap if all their non-

empty threshold sets intersect at all levels “below” level τ . Let {Cτ | τ ∈ T � {I}} be

a family of connectivity classes in P(E). For each τ ∈ T �{O}, it is easy to verify, by

using the axioms of connectivity classes and the fact that Yt(
∨
fα) =

⋃
Yt(fα), that

Hτ = {f ∈ Fun(E, T ) | Yτ ′(f) ∈ Cτ ′ , for all τ ′ �≥ τ} (4.77)

is a hyperconnectivity class in Fun(E, T ), which is called the flat τ -hyperconnectivity

class associated with {Cτ}. The elements in Hτ are called the flat τ -hyperconnected

functions in Fun(E, T ). A function is flat τ -hyperconnected if all its threshold sets

“below” level τ are connected, according to the respective connectivity class. Flat

τ -hyperconnectivity defines a degree of connectivity on Fun(E, T ), in the sense that

Hτ ⊆ Hτ ′ , for τ ≥ τ ′; i.e., flat τ -hyperconnectivity implies flat τ ′-hyperconnectivity,

for τ ≥ τ ′. Flat I-hyperconnectivity is simply referred to as flat hyperconnectivity,

whereas flat I-hyperconnected functions are simply referred to as flat hyperconnected

functions. Moreover, we write ⊥ instead of ⊥I and �⊥ instead of �⊥I . Clearly, flat

hyperconnectivity implies flat τ -hyperconnectivity, for each τ ∈ T � {O}. ♦
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Figure 4.23: An example of flat hyperconnectivity on Fun(E, IR), associated with the usual
Euclidean topological connectivity on E = IR. (a) f �⊥ g and f and g are flat hypercon-
nected. (b) f ⊥ g and f is flat hyperconnected, whereas g is not. (c) f ⊥ g and both f
and g are flat hyperconnected. Note that f ∨ g is flat hyperconnected only in (c) (in this
case, flat hyperconnectivity of the supremum is required by axiom (iii) of hyperconnectivity
classes).

Example 4.4.3(a) shows that graph-theoretic k-connectivity has a natural definition as

a hyperconnectivity class in the binary lattice P(E).

The hyperconnectivity class of Example 4.4.3(b) is generated by means of the threshold

sets of a function, hence the name “flat” τ -hyperconnectivity. An important special case

corresponds to the family {Cτ = C | τ ∈ T �{I}}, where C is some fixed connectivity class in

P(E). In this case, the corresponding flat τ -hyperconnectivity class is said to be associated

with C. Fig. 4.23 illustrates such an example of flat hyperconnectivity, which corresponds

to the original example of hyperconnectivity proposed by J. Serra in [78, 79] to model the

catchment basins of the watershed transform [6].

Fuzzy level connectivity is an example of flat hyperconnectivity, as shown by the next

result.

4.4.4 Proposition. Let (E,∆) be a T -fuzzy topological space. A function f ∈ Fun(E, T )

is level connected if and only if it is flat hyperconnected in Fun(E, T ), with respect to the

family {Cτ | τ ∈ T � {I}} of connectivity classes in P(E), given by

Cτ = {A ∈ P(E) | A is connected in the topological space (E, Yτ (∆))}, (4.78)

for τ ∈ T � {I}. �

Proof. This follows directly from Definition 3.3.7. Q.E.D.

Note that the overlapping criterion in this case corresponds to the concept of overlapping

given by Definition 3.3.8.
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In the case in which T is a finite chain — to fix ideas, let T = {0, 1, . . . , R − 1}, where

R ≥ 2 is a finite integer— it is clear that Yτ (f) = Xτ+1, for τ ∈ T � {R− 1}. Hence, given

τ ∈ T � {0}, the overlap criterion in (4.76) can be written as

⊥τ ({fα}) =

 I⊥, if
⋂
α{Xτ ′(fα) | Xτ ′(fα) �= ∅} �= ∅, for all 1 ≤ τ ′ ≤ τ

O⊥, otherwise
, (4.79)

while the flat τ -hyperconnectivity class in (4.77) can be written as:

Hτ = {f ∈ Fun(E, T ) | Xτ ′(f) ∈ Cτ ′−1, for all 1 ≤ τ ′ ≤ τ}. (4.80)

Obviously, the flat τ -hyperconnectivity class associated with a connectivity class C is given

simply by Hτ = {f ∈ Fun(E, T ) | Xτ ′(f) ∈ C, for all 1 ≤ τ ′ ≤ τ} (it follows that, in

this case, a function is flat hyperconnected if and only if it has a single connected regional

maximum, see Section 4.2.4).

These observations form the basis for the following result, which shows that fuzzy topo-

graphic connectivity is also an example of flat hyperconnectivity.

4.4.5 Proposition. Let E be a finite subset of ZZn, and let T = {0, 1, . . . , R − 1}, where

R ≥ 2 is a finite integer. A function f ∈ Fun(E, T ) is topographically connected if and only

if it is flat hyperconnected in Fun(E, T ), with respect to the family {Cτ | τ ∈ T � {R− 1}}
of connectivity classes in P(E), given by

Cτ = {A ∈ P(E) | A is connected in the graph G = (E,Xτ+1(σf ))}, (4.81)

for τ ∈ T � {R− 1}, where σf is the T -fuzzy relation given by (3.16). �

Proof. This follows directly from the preceding observations and Proposition 3.4.11. Q.E.D.

Note that the overlapping criterion here corresponds to the concept of overlapping given

by Definition 3.4.12.

4.4.2 Hyperconnectivity Openings

Hyperconnectivity openings are defined in a similar fashion to connectivity openings.

Given a hyperconnectivity class H in a lattice L, we define subclasses Hx ⊆ H by

Hx = {H ∈ H | H = O or H ≥ x}, x ∈ S. (4.82)
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The hyperconnectivity openings associated with H are given by

ηx(A) =
∨

{H ∈ Hx | H ≤ A} =
∨

{H ∈ H | x ≤ H ≤ A}, A ∈ L, (4.83)

for every x ∈ S. By comparing (4.83) to (4.8), it is clear that, if H is a connectivity class,

then hyperconnectivity openings reduce to standard connectivity openings.

As in the standard connectivity case, we can also define a hyperreconstruction operator.

Given a marker M ∈ L, the hyperreconstruction ϑ(A |M) of A ∈ L given M is defined by:

ϑ(A |M) =
∨
x≤M

ηx(A). (4.84)

Being a supremum of openings, the operator ϑ(· | M) is an opening on L, for a fixed

marker M ∈ L.

Due to the weakening introduced by the notion of hyperconnectivity, hyperconnectiv-

ity openings lose some of the nice properties that connectivity openings satisfy. This is

discussed next.

Recall that 〈M | ∨ 〉 denotes the family that is sup-generated by M; i.e., the family

consisting of all elements of L obtained by taking suprema of elements of M. It is easy to

verify that the invariance domain of ηx is given by

Inv(ηx) = 〈Hx | ∨ 〉. (4.85)

If H is a connectivity class, then Inv(ηx) = Hx; i.e., A is invariant to ηx if and only if A = O

or A is connected and x ≤ A. For a connectivity class, this implies that the subclasses Hx
are sup-closed, for all x ∈ S. This property is not in general true for hyperconnectivity

classes. In addition, there is no guarantee that, in general, the hyperconnectivity opening

ηx(A) will be hyperconnected; i.e., it may happen that ηx(A) �∈ H, for some x ∈ S. As a

matter of fact, each of these two properties characterize connectivity classes. This is shown

by the following proposition.

4.4.6 Proposition. Let H be a hyperconnectivity class in a lattice L. The following

assertions are equivalent:

(a) ηx(L) ⊆ H, for every x ∈ S,

(b) Hx is sup-closed, for every x ∈ S,

(c) H is a connectivity class in L. �
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Proof. (a) ⇒ (b): For a given x ∈ S, let H′ ⊆ Hx. We need to show that
∨H′ ∈ Hx. Note

that H′ ⊆ Inv(ηx), which implies that
∨H′ ∈ Inv(ηx), since Inv(ηx) is sup-closed. Now,

if H′ is empty or H′ = {O}, then
∨H′ = O and we are done. Otherwise, we have that

x ≤ ∨H′, so x = ηx(x) ≤ ηx(
∨H′) =

∨H′ ∈ H, from the assumption that ηx(L) ∈ H. It

follows that
∨H′ ∈ Hx, as required.

(b) ⇒ (c): Axioms (i) and (ii) of a connectivity class are clearly satisfied. In order

to show axiom (iii), consider a family {Hα} in H, such that
∧
Hα �= O. Since S is sup-

generating, we can pick x ≤ ∧Hα, for some x ∈ S. This implies that x ≤ Hα ⇒ Hα ∈ Hx,
for all α. Since Hx is sup-closed, it follows that

∨
Hα ∈ Hx ⇒ ∨Hα ∈ H.

(c) ⇒ (a): This is obvious. Q.E.D.

This proposition shows that a hyperconnectivity class that is not a connectivity class will

fail to satisfy both (a) and (b). Nevertheless, hyperconnectivity openings satisfy properties

that resemble those of connectivity openings. In particular, we have the following result.

4.4.7 Proposition. Let L be a lattice with sup-generating family S, furnished with an

overlap criterion ⊥, and let H be a hyperconnectivity class in L. If ηx(A), ηy(A) ∈ H, for

some x, y ∈ S(A), then ηx(A) ⊥ ηy(A) ⇒ ηx(A) = ηy(A). �

Proof. The proof is similar to the one given in Theorem 4.1.9. From axiom (iii) of

hyperconnectivity classes, we have that ηx(A), ηy(A) ∈ H and ηx(A) ⊥ ηy(A) imply H =

ηx(A)
∨
ηy(A) ∈ H. Moreover, since ηx(A), ηy(A) ≤ A, we have that H ≤ A. Now,

x ≤ A ⇒ x ≤ ηx(A) ⇒ x ≤ H ⇒ H ≤ ηx(A) ⇒ ηy(A) ≤ ηx(A). The reverse inclusion is

shown analogously. Q.E.D.

The previous proposition says that, if ηx(A) and ηy(A) are hyperconnected, then they

are either equal or do not overlap, according to the overlapping criterion ⊥.

In similar fashion to the definition of connected components (see Definition 4.1.5), we

can define the concept of hyperconnected components.

4.4.8 Definition. Let L be a lattice, furnished with a hyperconnectivity class H, and let

A ∈ L. A hyperconnected component of A is a nonzero elementH ∈ H such that: (a)H ≤ A,

and (b) there is no H ′ ∈ H such that H ≤ H ′ ≤ A. "

Hyperconnected components partition the object to which they belong, in the following

sense. Given an element A ∈ L, let H(A) be the family of all hyperconnected components

of A. The following properties can be easily verified:
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Figure 4.24: An example of hyperconnectivity openings, assuming flat hyperconnectivity
on Fun(E, IR), associated with the Euclidean topological connectivity on E = IR. Top:
Original function f and four sup-generators. Bottom: Hyperconnected components of f ,
which correspond to functions ηδ1(f), ηδ2(f) and ηδ3(f). The function ηδ4(f), not shown,
corresponds to the original function f ; hence, it is not hyperconnected.

(i) H1 = H2 or H1 �⊥ H2, for every H1, H2 ∈ H(A) ,

(ii) A =
∨
Hα∈H(A)Hα .

Hence, the “partition” of hyperconnected components behaves in a similar fashion to ordi-

nary partitions, since distinct zones (i.e., hyperconnected components) do not overlap, and

their supremum reconstitutes the original object.

Now, let Q(A) = {ηx(A) | x ≤ A} ∩ H. If H is a connectivity class, then it is clear

that Q(A) = H(A) (see Proposition 4.1.6 and the discussion that follows). For arbitrary

hyperconnectivity classes, it is easy to see that Q(A) ⊆ H(A) (the argument is similar to

the one given in the proof of Proposition 4.1.6). In other words, for x ≤ A, if ηx(A) is

hyperconnected, then ηx(A) is a hyperconnected component of A.

Fig. 4.24 illustrates these concepts. In this example, we consider the case of flat hy-

perconnectivity. The original function f has three hyperconnected components, each one

associated with a distinct regional maximum of f . Note that ηδ4(f) = f , so that ηδ4(f) is

not hyperconnected.

For the example depicted in Fig. 4.24, we have that Q(f) = H(f). However, it is possible

in some cases to have the strict inequality Q(A) ⊂ H(A), for some element A ∈ L; i.e.,
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there might exist a hyperconnected component H of A such that H �= ηx(A), for all x ∈ S.

For instance, consider L = P(E), where E = {a, b, c, d}, with the points as sup-generators,

and let P(E) be furnished with the overlap criterion

⊥ ({Aα}) =

 I⊥, if |⋂Aα | ≥ 2

O⊥, otherwise
. (4.86)

The family

H = {∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}}, (4.87)

defines a hyperconnectivity class in P(E). Clearly

Q(E) = {{a, b}, {c, d}}, (4.88)

whereas

H(E) = {{a, b}, {b, c}, {c, d}}. (4.89)

The hyperconnected component {b, c} does not arise from any of the hyperconnectivity

openings; note that η{b}(E) = {a, b, c} �∈ H and, similarly, η{c}(E) = {b, c, d} �∈ H.

The previous counterexample gives another instance when ηx(A) fails to be hypercon-

nected for some sup-generator x ≤ A. It is easy to see that this happens if and only if there

are distinct hyperconnected components of A that are marked simultaneously by x. Such a

sup-generator can be considered to belong to an “uncertainty” region, which is in between

hyperconnected components. This idea is made precise in the next subsection.

4.4.3 Z-operators and Segmentation by Similarity Zones

We now introduce the notion of Z-operators, associated with a hyperconnectivity class,

and show that these operators can be effectively used for segmentation.

Consider a lattice L with sup-generating family S, furnished with a hyperconnectivity

class H, and let A ∈ L. We define the following relation between sup-generators:

x
A∼ y if ηx(A) = ηy(A), x, y ∈ S, (4.90)

where {ηx | x ∈ S} are the hyperconnectivity openings associated with H. It is obvious

that A∼ is an equivalence relation on S. In particular, this relation partitions the sup-

generators into equivalence classes.



130 Connectivity on Complete Lattices

Based on the equivalence relation A∼, we can define the following class of operators on L:

ζx(A) =


∨{y ∈ S | y A∼ x}, x ≤ A
O, otherwise

, x ∈ S. (4.91)

These are called the Z-operators associated with the hyperconnectivity class H. Note that

Z-operators are anti-extensive, but are not in general increasing.

We show next that Z-operators provide a method for partitioning binary images. Con-

sider the lattice L = P(E) with the points as sup-generators, and let H be a hypercon-

nectivity class in P(E). It is easy to verify that, given a set A ∈ P(E), the mapping

zA: A→ P(E), given by

zA(v) = ζ{v}(A) =
⋃

{{w} ⊆ E | {w} A∼ {v}}, v ∈ A, (4.92)

defines a set partition of A. We refer to zA as the segmentation by similarity zones of A.

Note that each similarity zone Z = zA(v), for v ∈ A, of the partition zA is associated with

a characteristic set F ⊆ E, such that η{w}(A) = F , for all w ∈ Z. Distinct zones are

associated with distinct characteristic sets. If the characteristic set F is hyperconnected,

then F is a hyperconnected component of A. In this case, the similarity zone is said to

be a component zone of A. A zone associated with a non-hyperconnected set F is called

a transition zone of A. These zones correspond to transition zones that are “in-between”

hyperconnected components. These ideas are illustrated in Fig. 4.25 (see also Fig. 4.9,

which depicts the two 2-connected components of A).

The following result shows that Z-operators reduce to standard connectivity openings,

when H is a connectivity class.

4.4.9 Proposition. Let L be a lattice with sup-generating family S, furnished with a

hyperconnectivity class H. If H is a connectivity class in L, then ζx = γx, for x ∈ S, where

{γx | x ∈ S} are the connectivity openings associated with H. �

Proof. Let A ∈ L. If x �≤ A, the result is trivial. So, let x ≤ A. For y A∼ x, we have

that y ≤ γy(A) = γx(A). It follows that ζx(A) =
∨{y ∈ S | y A∼ x} ≤ γx(A). Conversely,

for y ≤ γx(A), we have that y ≤ A ⇒ y ≤ γy(A) ⇒ γx(A)
∧
γy(A) ≥ y �= O ⇒ γx(A) =

γy(A) ⇒ y
A∼ x ⇒ y ≤ ζx(A), so γx(A) =

∨{y ∈ S | y ≤ γx(A)} ≤ ζx(A). Hence,

ζx(A) = γx(A). Q.E.D.
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Figure 4.25: An example of a segmentation by similarity zones. The assumed hypercon-
nectivity class is the graph-theoretic k-connectivity class of Example 4.4.3(b), with k = 2.
The usual 8-adjacency connectivity is assumed as the base connectivity class. (a) A binary
image A ∈ P(E). (b) Segmentation by similarity zones of A.
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Figure 4.26: An example of segmentation by similarity zones of a function f . The assumed
hyperconnectivity class is the flat hyperconnectivity class in Fun(E, IR), associated with
the Euclidean topological connectivity on E = IR. (a) A grayscale function f ∈ Fun(E, IR).
(b) Segmentation by similarity zones of f .

As a corollary, if L = P(E) and H is a connectivity class in L, the segmentation by

similarity zones of an element A ∈ P(E) reduces to the PCC of A. Of course, this is a

“hard” segmentation, in the sense that it has only component zones and no transition zones.

In the case of the general function lattice L = Fun(E, T ), Z-operators cannot be used

directly to define a segmentation of a function f ∈ Fun(E, T ). However, we obtain a

segmentation of the support of f , if we introduce the following modification. Given a



132 Connectivity on Complete Lattices

function f ∈ Fun(E, T ), consider the mapping zf : Ω(f) → P(E), given by

zf (v) =
⋃

{{w} ⊆ Ω(f) | δw,f(w)
f∼ δv,f(v)}, v ∈ Ω(f). (4.93)

It is not difficult to verify that zf defines a set partition of the support Ω(f) of f (it is

illustrative to compare (4.93) to (4.92)). We refer to zf as the segmentation by similarity

zones of f . Similarly as before, we say that a similarity zone Z = zf (v), v ∈ Ω(f), is a

component zone of f , if ηδv,f(v)(f) ∈ H, for v ∈ Z, whereas Z is said to be an transition

zone of f , if ηδv,f(v)(f) �∈ H, for v ∈ Z.

An example of segmentation by similarity zones of a function f is depicted in Fig. 4.26,

where flat hyperconnectivity is assumed. Fig. 4.27 shows an application of such a segmen-

tation to the cornea cells image of Fig. 4.11, assuming flat hyperconnectivity as well. The

image is first preprocessed by an open-close alternating sequential filter [77] in order to

reduce noise. The solid regions depict component zones, whereas the unfilled regions depict

transition zones. Most cells are represented accurately by component zones in the segmen-

tation. The transition zones in the segmentation correspond to regions in between cells.
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(a)

(c)(b)

Figure 4.27: (a) The cornea cells image of Fig. 4.11 after preprocessing by an open-close
alternating sequential filter. (b) Segmentation by similarity zones of the image in (a),
assuming flat hyperconnectivity associated with the usual 8-adjacency connectivity. The
solid regions depict component zones, whereas the unfilled regions depict transition zones.
(c) The segmentation result in (b) superimposed on the original image in (a).





Chapter 5

Connected Operators

Connected operators have become very popular in recent years[19, 35, 37, 71, 73, 74, 87].

This is mainly due to the fact that these operators do not work at the pixel level, but rather

at the level of the flat zones of an image, which are defined using connectivity criteria.

A connected operator can remove boundaries, but cannot shift boundaries or introduce

new ones. It therefore preserves contour/shape information, known to carry most of image

content perceived by human observers.

In this chapter, we study connected operators in the framework of connectivity classes.

In Section 5.1, we present the theory of binary connected operators, while in Section 5.2,

we examine connected operators in the general function lattice case. Finally, in Section 5.3,

we use a few examples taken from our previous work to demonstrate the effectiveness of

connected operators in various image processing and analysis tasks, including mine detec-

tion in multispectral images, target detection and tracking in FLIR video sequences, and

topology correction of 3-D brain MRI data.

5.1 Binary Connected Operators
In this section, we present basic facts about binary connected operators. For a more

detailed exposition, the reader is referred to [35].

Consider the set lattice L = P(E), with the points as sup-generators, and let C be an

arbitrary connectivity class in P(E). For every set A ∈ P(E), let

zA(x) =

 γx(A), if x ∈ A
γx(Ac), if x /∈ A

, (5.1)
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Figure 5.1: (a) A binary image A. (b) The output of a connected operator applied on A.
(c) This image cannot possibly be the output of a connected operator applied on A.

where {γx | x ∈ E} are the connectivity openings associated with C. Clearly, zA defines a

partition of the image domain E, in the sense of Definition 4.1.7. This is called the partition

of flat zones of A. The flat zones {zA(x) | x ∈ E} are either grains or pores of A. The

following definition introduces the concept of a connected operator on P(E).

5.1.1 Definition. An operator ψ on lattice P(E) is said to be a connected operator if,

for every A ∈ P(E), we have that zψ(A) is coarser than zA; i.e., for every A ∈ P(E),

zA(x) ⊆ zψ(A)(x), for all x ∈ E. "

Hence, an operator ψ on P(E) is connected if and only if, for each A ∈ P(E), the output

ψ(A) is constant over any flat zone Z of A; i.e., Z ⊆ ψ(A) or Z ⊆ (ψ(A))c. This implies that

a binary connected operator can only remove entire grains, or fill entire pores, so that it

acts by merging flat zones into larger ones. This means that a connected operator can only

remove boundaries; it cannot shift, break, or introduce new boundaries (here, “boundary”

is understood as the interface between flat zones). This is illustrated in Fig. 5.1.

The definition of a connected operator depends on the assumed connectivity class C,

which determines the partition of flat zones zA in (5.1). Hence, ψ may be connected

according to a given connectivity class C, but not according to another connectivity class C′.

However, we have the following proposition (this result appears in [35, Prop. 7.4]; the proof

given here is different from the one given in that reference).

5.1.2 Proposition. Let C and C′ be two connectivity classes in P(E), such that C ⊆ C′.

Every connected operator on P(E) according to C′ is also connected according to C. �
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Proof. Let Z be a flat zone of A ∈ P(E), according to C. Since C ⊆ C′, the flat zone Z

must be contained in some flat zone Z ′ according to C′. But ψ is connected according to C′;

i.e., ψ(A) is constant over Z ′, and thus it is constant over Z, as well. Hence, ψ is connected

according to C. Q.E.D.

Below, we give examples of simple binary connected operators.

5.1.3 Example.

(a) The identity operator A <→A, the complementation operator A <→Ac, and the constant

operators A <→ ∅ and A <→E are clearly connected operators on P(E), regardless of

the assumed connectivity class.

(b) Binary connectivity openings {γx | x ∈ E} are connected operators, according to the

associated connectivity class C in P(E). This follows from the fact that γx(A) keeps

the foreground zone of A marked by x, if any, and merges all other foreground zones

with the background zones.

(c) The binary reconstruction operator ρ(· | M) defines a connected operator, according

to the associated connectivity class C in P(E). This follows from the fact that ρ(A |
M) keeps the foreground zones of A that intersect M , if any, and merges all other

foreground zones with the background zones. ♦

The following result lists a number of ways for creating new connected operators from

existing ones (for a proof, see [35, Prop. 7.5]).

5.1.4 Proposition. Let ψ, φ, and {ψi | i ∈ I} be connected operators on P(E).

(i) The dual operator ψ∗ is connected.

(ii) The composition ψφ is connected.

(iii) The supremum
∨
ψi and infimum

∧
ψi are connected. �

An interesting and useful class of binary connected operators are the so-called grain

operators, introduced in [19, 35]. These connected operators act independently on each

connected component of the foreground and the background, so that the output can be

computed grain by grain and pore by pore.
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Our discussion of grain operators is similar to that in [35], the major difference being

that we focus on grain operators that act on the foreground and background separately,

due to the practical importance of these operators. We start by defining foreground criteria

and background criteria as mappings

u : P(E) → {0, 1} (5.2)

v : P(E) → {0, 1}, (5.3)

respectively. If u(A) = 1 (resp. v(Ac) = 1), then we say that A satisfies the foreground

(resp. background) criterion imposed by u (resp. v). Using this concept, we define the

foreground trivial operator and the background trivial operator on P(E) by

ιu(A) =

 A, if u(A) = 1

∅, otherwise
(5.4)

κv(A) =

 A, if v(Ac) = 1

E, otherwise
, (5.5)

respectively, for A ∈ P(E). Note that these operators are dual to each other: ι∗u = κu. Note

also that ιu and κv are connected operators, regardless of the assumed connectivity class.

Now, let C be a connectivity class in P(E). The trivial operators allow us to define the

foreground grain operator and the background grain operator by

ψu =
∨
x∈E

ιuγx (5.6)

φv =
∧
x∈E

κvϕx, (5.7)

respectively, where {γx | x ∈ E} are the connectivity openings associated with C and

{ϕx | x ∈ E} are the corresponding connectivity closings, given by ϕx = γ∗
x, for x ∈ E (the

connectivity closing ϕx(A) extracts the pore of A marked by x). Note that

ψ∗
u =

(∨
x∈E

ιuγx

)∗
=
∧
x∈E

(ιuγx)∗ =
∧
x∈E

ι∗uγ
∗
x =
∧
x∈E

κuϕx = φu; (5.8)

i.e., the foreground grain operator and the background grain operator are dual to each other.

The action of foreground and background grain operators is made clear by the following

alternative characterization (recall that C �A means “C is a connected component of A”).
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5.1.5 Proposition. For A ∈ P(E),

ψu(A) =
⋃

{C �A | u(C) = 1} (5.9)

φv(A) = A ∪
⋃

{C �Ac | v(C) = 0}. (5.10)

�

Proof. The expression for ψu(A) is obvious from (5.4) and (5.6). For φv(A), we have that

φv(A) = ψ∗
v(A) = (ψv(Ac))c =

(⋃
{C | C �A, v(C) = 1}

)c
= A ∪

⋃
{C | C �Ac, v(C) = 0}, (5.11)

as required. Q.E.D.

The previous result says that the foreground (resp. background) grain operator applies

the foreground (resp. background) criterion on each grain (resp. pore) of a binary image

A ∈ P(E) and keeps it or removes it (resp. fills it in) depending on whether it satisfies the

corresponding criterion.

From (5.9) and (5.10), it is clear that ψu and φv are anti-extensive and extensive con-

nected operators on P(E), respectively. Their most characteristic property, however, is that

they are the only such operators that act independently on each grain and pore. The next

result formalizes this statement.

5.1.6 Proposition.

(a) An anti-extensive connected operator ξ on P(E) is a foreground grain operator if and

only if

γxξ = ξγx, x ∈ E. (5.12)

(b) An extensive connected operator ξ on P(E) is a background grain operator if and

only if

ϕxξ = ξϕx, x ∈ E. (5.13)

�

Proof. We show only part (a); part (b) follows by duality. The direct implication can

be shown, in a straightforward manner, by using (5.9). To show the reverse implication,
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assume that ξ is an anti-extensive connected operator such that (5.12) holds. For C ∈ C,

define a foreground criterion u as follows (the value of u outside C is not relevant here):

u(C) =

 1, if ξ(C) = C

0, if ξ(C) = ∅
. (5.14)

We show that ξ = ψu. First, note that ξγx = ψuγx, since ξγx(A) = γx(A) = ψuγx(A), if

u(γx(A)) = 1, and ξγx(A) = ∅ = ψuγx(A), otherwise. In addition, note that γxψu = ψuγx,

as a direct consequence of the fact that ψu is a foreground grain operator. From (4.13) and

(5.12), it follows that ξ =
∨
x∈E γxξ =

∨
x∈E ξγx =

∨
x∈E ψuγx =

∨
x∈E γxψu = ψu. Q.E.D.

The previous result implies independent action on each grain and pore. For instance,

in the case of a foreground grain operator ψu, Proposition 5.1.6(a) implies that, for any

A1, A2 ∈ P(E) such that γx(A1) = γx(A2) = C, we have γxψu(A1) = γxψu(A2) = ψu(C).

As a straightforward corollary of Proposition 5.1.6, the output of foreground and back-

ground grain operators can be computed grain by grain and pore by pore, respectively.

5.1.7 Corollary. For every A ∈ P(E),

ψu(A) =
⋃
x∈E

ψuγx(A) (5.15)

φv(A) =
⋂
x∈E

φvϕx(A). (5.16)

�

Proof. From (4.13) and (5.12), we have that ψu(A) =
⋃
x∈E γxψu(A) =

⋃
x∈E ψuγx(A),

which shows (5.15). Equation (5.16) follows by duality. Q.E.D.

Additional properties of foreground and background grain operators are given by the

next proposition.

5.1.8 Proposition.

(a) The foreground grain operator ψu is idempotent. Moreover, it is increasing if u is

increasing, in which case ψu is an opening.

(b) The background grain operator φu is idempotent. Moreover, it is increasing if v is

increasing, in which case φv is a closing. �
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Proof. We show only part (a); part (b) follows by duality. Idempotence can be established

as follows:

ψuψu(A) =
⋃

{C � ψu(A) | u(C) = 1}
=
⋃

{C �A | u(C) = 1}
= ψu(A). (5.17)

Now, assume that u is increasing; that is, A ⊆ B ⇒ u(A) ≤ u(B). Clearly, this implies that

the foreground trivial operator ιu is increasing. Since the connectivity opening γx is also

increasing, and composition and union of increasing operators is increasing, we have that

ψu =
∨
x∈E ιuγx is increasing as well. Since ψu is also anti-extensive, it is an opening. Q.E.D.

Next, we give a few examples of foreground and background grain operators with in-

creasing foreground and background criteria.

5.1.9 Example.

(a) For a given x ∈ E, the binary connectivity opening γx is a foreground grain opera-

tor, which is associated with the increasing foreground criterion given by u(A) = 1,

if x ∈ A.

(b) The binary reconstruction operator ρ(· | M) is a foreground grain operator, which is

associated with the increasing foreground criterion given by u(A) = 1, if M ∩A �= ∅.

(c) Let s be the area feature on P(IR2), defined in Section 6.5.3. For a given k > 0,

consider the foreground criterion given by u(A) = 1, if s(A) ≥ k. The associated

foreground grain operator on P(IR2) is known as area opening; the dual background

grain operator is known as area closing (these operators are pseudo-openings and

pseudo-closings, respectively, since the area feature is not always increasing; see Sec-

tion 6.5.3). Similarly, one can define a length opening on P(IR), a volume opening

on P(IR3), as well as the respective dual closings, and higher-dimensional analogs

on P(IRn), for n ≥ 4. On the other hand, the discrete area feature on P(ZZ2), also

defined in Section 6.5.3, is increasing, so that u is increasing, in this case. The as-

sociated foreground area operator on P(ZZ2) is known as discrete area opening; the

dual background grain operator is known as discrete area closing (these operators are

true openings and closings). Accordingly, one can define a discrete length opening
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Figure 5.2: (a) Original image A. (b) Area opening θ̌s(A). (c) Opening by reconstruction
θ̌B(A), with a disk structuring element B. The assumed connectivity is the usual Euclidean
topological connectivity.

on P(ZZ), a discrete volume opening on P(ZZ3), as well as the respective dual closings,

and higher-dimensional analogs on P(ZZn), for n ≥ 4.

(d) Let E = IRn or ZZn. For a given B ⊆ E, consider the foreground criterion u(A) = 1, if

B fits in A; i.e., Bx ⊆ A, for some x ∈ E. This criterion is increasing. The associated

foreground grain operator on P(E) is known as opening by reconstruction; the dual

background grain operator is known as closing by reconstruction. ♦

We denote the area opening and opening by reconstruction operators by θ̌s and θ̌B,

respectively. Similarly, φ̌s and φ̌B denote the area closing and the closing by reconstruction

operators, respectively. These operators are very useful in practice [76, 89]. Fig. 5.2 depicts

an illustration of area opening and opening by reconstruction. Note that the area opening

tends to eliminate small components, while the opening by reconstruction tends to eliminate

thin, elongated features.

Useful foreground and background grain operators can be designed with non-increasing

criteria, in which case the operators are still (anti-)extensive and idempotent, in addition to

being connected. As we saw, an example is the area opening on P(IR2). Another example

is associated with the perimeter criterion in IR2, which is not increasing. The resulting

foreground grain operator will remove all grains with perimeter less than some threshold.

However, this is not an increasing operator, and therefore not an opening.

The term “opening by reconstruction” comes from the fact that, in practice, this fore-

ground grain operator is usually implemented by means of reconstruction. In fact, we have

the following result (see also [35, Prop. 12.4]).
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5.1.10 Proposition. Let E = IRn or ZZn, and let C be a translation-invariant connectivity

class in P(E). If B ∈ P(E) is connected and contains the origin, then

θ̌B(A) = ρ(A | A&B), A ∈ P(E). (5.18)

�

Proof. First, note that the criterion “B fits in A” corresponds to the statement A&B �= ∅.

Hence, by using Propositions 5.1.5 and 4.1.16, we need to show that⋃
{C �A | C &B �= ∅} =

⋃
{C �A | C ∩ (A&B) �= ∅}. (5.19)

Let C�A. We will show that C&B �= ∅ if and only if C∩(A&B) �= ∅, which gives the desired

result. The direct implication is obvious. To show the converse implication, first note that,

since B contains the origin, we have that C &B = {x ∈ E | Bx ⊆ C} = {x ∈ C | Bx ⊆ C}.

On the other hand, we have that C∩(A&B) = {x ∈ C | Bx ⊆ A}. Now, let x ∈ C∩(A&B);

i.e., x ∈ C, with Bx ⊆ A. Note that Bx ∈ C and x ∈ Bx ⊆ A. Hence, Bx ⊆ γx(A) = C,

which implies that x ∈ C &B. Q.E.D.

Note that, when B is not connected, we still have the inequality θ̌B(A) ⊆ ρ(A | A&B).

In [35], H. Heijmans defines the following operator that simultaneously acts on the

foreground and the background:

ζu,v(A) =
⋃

{C | C �A and u(C) = 1 or C �Ac and v(C) = 0}, (5.20)

forA ∈ P(E), where, as before, u and v are foreground and background criteria, respectively.

This is known as the grain operator and generalizes the foreground and background grain

operators that we have considered above, since ψu = ζu,1 and φv = ζ1,v. Contrary to

what might be expected, it is not true in general that ζu,v = ψuφv. Rather, by using

Proposition 5.1.5, it is easy to see that

ζu,v(A) = ψu(A) ∪ [φv(A) �A] = φv(A) � [A� ψu(A)], (5.21)

for A ∈ P(E). However, if u and v are increasing, it can be shown that ζu,v = ψuφv =

φvψu (so that ζu,v is a strong filter, see [77]) if and only if ζu,v satisfies a property called

stability [35].

The operator ζu,v is clearly a connected operator. Moreover, these operators form the

only class of connected operators that act independently on each flat zone of a binary image.
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The following result, which can be considered to be the analog of Proposition 5.1.6, makes

this precise. To make the proof compact, we write A(Z) = t to indicate that a set A is

constant over a set Z, where t = 1, if Z ⊆ A, whereas t = 0, if Z ⊆ Ac.

5.1.11 Proposition. A connected operator ψ is a grain operator if and only if, for any

A1, A2 ∈ P(E) such that C is a flat zone of both A1 and A2, then ψ(A1)(C) = ψ(A2)(C). �

Proof. “⇒”: We have ψ = ζu,v, so that

ψ(A1)(C) = ψ(A2)(C) =

 u(C), if C is a grain

1 − v(C), if C is a pore
. (5.22)

“⇐”: Let u(C) = ψ(C)(C) and v(C) = 1 − ψ(Cc)(C), for C ∈ C (the value of u and

v outside C does not matter here). It suffices to show that ψ(A)(C) = ζu,v(A)(C), for all

A ∈ P(E), where C is any flat zone (grain or pore) of A. To fix ideas, assume that C is a

grain of A. Then, ζu,v(A) = u(C) = ψ(C)(C). But C is a grain of both A and C. Thus,

by hypothesis (with A1 = A and A2 = C), we have that ψ(A)(C) = ψ(C)(C). Therefore,

ψ(A)(C) = ζu,v(A)(C), as required. The argument for the case when C is a pore of A is

completely analogous. Q.E.D.

In other words, a connected operator ψ is a grain operator if and only if, for each flat

zone C of A, we have that ψ(A)(C) depends only on C. We remark that the above result

corresponds to Proposition 8.4 in [35], though our statement and proof are more compact.

5.2 Function Connected Operators

In the previous section, we have used the term “flat zone” to signify either a grain or a

pore in a binary image. It turns out that the concept of connected operator can be extended

to the general function lattice case by generalizing the idea of a flat zone.

Given a function f ∈ Fun(E, T ), we can define a mapping F : T → P(E), given by

F (t) = {x ∈ E | f(x) = t}, t ∈ T . (5.23)

For instance, in the binary case (e.g., when T = {0, 1}), we have that F (0) and F (1)

correspond to the image background and foreground, respectively. Let C be a connectivity

class in P(E), and let

zf (x) = γx(F (f(x))), x ∈ E, (5.24)
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where {γx | x ∈ E} are the connectivity openings associated with C. Clearly, zf defines a

partition of the image domain E, in the sense of Definition 4.1.7, which we call the partition

of flat zones of f . The flat zones {zf (x) | x ∈ E} are the largest connected regions of E

where the value of f is constant; e.g., in the case of color images, a flat zone is a largest

connected region that has a single color. It is easy to see that, in the binary case, (5.24)

reduces to (5.1).

The definition of function connected operators can be essentially phrased in the exact

same way as in the binary case.

5.2.1 Definition. An operator ψ on lattice Fun(E, T ) is said to be a connected operator

if, for every f ∈ Fun(E, T ), we have that zψ(f) is coarser than zf ; i.e., zf (x) ⊆ zψ(f)(x), for

all x ∈ E. "

In other words, an operator ψ on Fun(E, T ) is connected if and only if, for each f ∈
Fun(E, T ), the output ψ(f) is constant over any flat zone of f . This implies that a function

connected operator ψ acts by merging flat zones of an image f into larger ones. Clearly, a

function connected operator cannot shift boundaries (i.e., move the interface between flat

zones) or introduce new boundaries.

The following is the function analog of Proposition 5.1.2. The proof is omitted, being

almost identical to the proof given for the binary result.

5.2.2 Proposition. Let C and C′ be two connectivity classes in P(E), such that C ⊆ C′.

Every connected operator on Fun(E, T ) according to C′ is also connected according to C. �

In the case in which T is a chain, function connected operators are known as grayscale

connected operators. The most fundamental result about grayscale connected operators is

that they can be obtained from binary connected operators by means of flat extension, dis-

cussed in Section 2.2. This is shown by the next result. For simplicity, we restrict ourselves

to the case T = IR. The proof applies to arbitrary chains T as well (including discrete ones),

with only minor modifications. To make the proof compact, we write f(Z) = t to denote

that f takes the constant value t over Z.

5.2.3 Proposition. If ψ is a binary connected operator on P(E), then the flat extension ψ

is a grayscale connected operator on Fun(E, IR). �
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Proof. Let f ∈ Fun(E, IR), and Z be an arbitrary flat zone of f with value t ∈ IR. To

show the desired result, we need to show that ψ(f) is constant over Z (so that the partition

of flat zones of ψ(f) is coarser than the partition of flat zones of f). First, note that, since

IR is a chain,

f(Z) = t ⇔ Z ⊆ Xt(f) and Z ⊆ [Xs(f)]c, for s > t, (5.25)

where Xt(f) = {x ∈ E | f(x) ≤ t}, for t ∈ IR, are the threshold sets of f (it is easy

to see that, in general, the reverse implication in (5.25) is not true for a lattice T that

is not a chain). We also make use of the following fact: for a binary connected operator

ψ and A,B ∈ P(E), with B being connected, we have that B ⊆ A ⇒ B ⊆ ψ(A) and

B ⊆ Ac ⇒ B ⊆ [ψ(A)]c. From (5.25), it now follows that f(Z) = t ⇒ Z ⊆ Xt(f) ⇒
Z ⊆ Xs(f), for s < t. Since Z is connected and ψ is a connected operator, this implies

that Z ⊆ ψ(Xs(f)), for s < t ⇒ Z ⊆ ⋂s<t ψ(Xs(f)) = Xt(ψ(f)), where we used (2.38).

Similarly, we have that f(Z) = t ⇒ Z ⊆ [Xr(f)]c, for r > t ⇒ Z ⊆ [ψ(Xr(f))]c, for r >

t ⇒ Z ⊆ ⋃s<r[ψ(Xs(f))]c = [
⋂
s<r ψ(Xs(f))]c = [Xr(ψ(f))]c, for r > t, where we again

used (2.38). From (5.25), this implies that ψ(f)(Z) = t. Q.E.D.

This result first appeared in [75]; the proof above is an expanded version of the one

given in that reference. This result guarantees that we can use tools related to binary

connected operators, which we have encountered before, to build grayscale connected oper-

ators. Below, we give a few examples, where we use Examples 5.1.3 and 5.1.9 in conjunction

with Proposition 5.2.3.

5.2.4 Example.

(a) The grayscale reconstruction operator ρ (· | g), defined in (4.21), is a grayscale con-

nected operator.

(b) The flat extensions of the binary area opening and the binary discrete area opening

of Example 5.1.9(c) are grayscale connected operators, known as grayscale area open-

ings [88]. Dually, grayscale connected operators known as grayscale area closings can

be defined.

(c) Similarly, the flat extension of the binary opening by reconstruction of Example 5.1.9(d)

is a grayscale connected operator, known as grayscale opening by reconstruction. Du-

ally, a grayscale connected operator known as grayscale closing by reconstruction can

be defined. ♦
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The grayscale connected operators discussed above are very useful in image processing

and analysis applications. This will be illustrated in the next section.

As a final remark, there is no definite formulation of a “grayscale grain operator,” as

has been also observed by H. Heijmans in [35]. The flat extension of binary grain operators

can be characterized only loosely, as grayscale connected operators that act independently

on image “maxima” and “minima” (so that if two different images coincide at a maximum,

for instance, then the output for both should coincide there, too).

5.3 Applications

In this section, we present examples, based on our previous work, which illustrate the

application of connected operators to image processing and analysis problems.

5.3.1 Landmine Detection in Multispectral Aerial Images

Automatic mine detection, a critical issue in battlefield management, is expected to

provide accurate and reliable detection of mines embedded in clutter. In general, this is a

very hard problem, which is facilitated by the acquisition of multispectral images. In [9],

we described a procedure for automatic mine detection in multispectral data provided by

the Coastal Battlefield Reconnaissance and Analysis (COBRA) program of the U.S. Navy.

This method improved on previous efforts reported in [2]. As part of an ongoing research

effort on automatic landmine detection, the work in [9] was later expanded in [3–5].

Fig. 5.3(a) depicts a band in one of the available six-band multispectral data sets. The

targets have a characteristic grayscale profile and are set against a noisy background of sand

and grass, which corresponds to the clutter. In [9], we developed a two-stage procedure to

solve the problem of automatically extracting landmines from such data sets. The first stage

of the proposed method consists of multispectral enhancement of the data by application of

the so-called Maximum Noise Fraction (MNF) transform [29]. The second stage consists of

a target detection algorithm, which is applied to each band of the enhanced data. The final

detection result is obtained by majority voting among the results obtained for each band.

The MNF transform is used to reduce the effect of clutter and enhance the presence of

targets. It is given by a p × p matrix (where p is the number of bands), which consists of

the left eigenvectors of the matrix CηC−1
f , where Cf and Cη are the covariance matrices

of the data and the clutter, respectively. Estimation of the data covariance matrix Cf
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(a)

(b)

(c)

Figure 5.3: (a) Band 4 of original multispectral data. (b) Clutter approximation given
by grayscale opening by reconstruction. (c) Band 4 of enhanced multispectral data after
application of the MNF transform.
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Figure 5.4: Final landmine detection result obtained with the proposed method. Circles
indicate correctly detected targets, while squares indicate misdetections. Unmarked objects
are false alarms.

can be easily done by means of standard covariance estimation techniques applied on the

available data [85]. However, estimation of the clutter covariance matrix Cη necessitates

an approximation of the clutter.

Therefore, estimation of the clutter is a critical step if the MNF transform is to be

used. By exploring the fact that the landmines have a characteristic grayscale profile that

approximates relatively small circular or elliptic spikes, we have found that grayscale opening

by reconstruction provides a very good approximation of the clutter. The grayscale opening

by reconstruction, by a conveniently sized disk structuring element, eliminates the landmines

on each band, while minimizing distortion, thus obtaining a good approximation of the

clutter. Figs. 5.3(b) and (c) depict the opening by reconstruction of the original band in

(a) (i.e., the clutter approximation) and the corresponding band in the enhanced data,

respectively. The connectivity used in this example was 8-adjacency connectivity.

Subsequent application of the second stage of the method, which consists of a target

detection algorithm applied to the enhanced data, leads to excellent detection results (this

stage also employs binary and grayscale openings by reconstruction). A low number of

misdetections is observed, whereas only a small number of false alarms is introduced by the

algorithm. This can be seen in Fig. 5.4, which displays the final result corresponding to the

data set used in Fig. 5.3. The good results obtained demonstrate the effectiveness of binary

and grayscale opening by reconstruction in this problem.
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5.3.2 Target Detection and Tracking in FLIR Image Sequences

Automatic target detection and tracking in forward-looking infrared (FLIR) scenes is

a difficult task, due to high variability of target types and background clutter and the

way those can manifest themselves in images due to varying temperature and atmospheric

conditions [43].

The particular FLIR image sequence data considered here was provided by the U.S.

Army Missile Command (MICOM). The image sequences were obtained by means of a

FLIR sensor mounted on an airborne platform. Fig. 5.5 shows three consecutive frames

from one of the available image sequences. Note that the targets appear as bright features.

In [10], we have proposed a two-step method, based on connected operators, for auto-

matic target detection and tracking in the FLIR image sequences provided by MICOM. Our

method avoids the variability issue in FLIR scenes by not requiring any target modelling,

in contrast, for instance, to pattern-theoretic approaches to the same problem [42]. The

first step in our method consists of intraframe processing; i.e., processing of each frame

separately. This step uses connected operators based on size and position criteria. The

second step in our method involves interframe processing; i.e., processing across frames.

Here, a connected operator based on a motion criterion is used.

The size and position criteria used in the intraframe processing step are spatial con-

straints on the targets of interest. The size criterion corresponds to the fact that the

targets of interest have a maximal specified apparent size. In other words, very large fea-

tures are likely to be background clutter, such as roads, buildings, etc. On the other hand,

the position criterion requires that the targets of interest be situated away from the bound-

ary of the field of view (FOV). This reflects the fact that targets of interest situated in the

periphery of the sensor’s FOV cannot be reliably detected (in addition, clutter is likely to

extend beyond the FOV).

The size criterion is applied via a grayscale opening by reconstruction by an appropri-

ately sized structuring element, which removes features of size smaller than some specified

maximum size, followed by subtraction from the original frame. This corresponds to a

background-removal type of operation. The position criterion is then applied, by means

of grayscale reconstruction with a marker obtained in such a way that objects connected

to the periphery of the image are eliminated (in addition, objects that are too small are

not marked, and thus removed). The connectivity used throughout is digital 4-adjacency
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Figure 5.5: Three consecutive frames from one of the available FLIR sequences.

connectivity. Fig. 5.6 depicts the output of these operators on one of the bands. Note that

the “heat” color map present in the original sequence is first removed, prior to application

of the method.

After binarization of all frames, the interframe processing step of the method follows.

This step imposes a motion criterion that reflects the fact that the targets of interest display

a continuous trajectory across frames and have limited relative motion with respect to the

FLIR sensor. The basic idea is to compute all spatio-temporal connected components

(i.e., connected components in the 3-D volume formed by considering time as the third

coordinate), and discard those that do not span a sufficient number of frames. However,

the underlying connectivity needs to take into account temporal undersampling and sensor

jitter, which makes the targets “jump” from frame to frame. The solution is to use a

dilation-based connectivity class (see Section 4.3.1), where the base connectivity is 3-D

digital 6-adjacency connectivity (connectivity across the faces of each volumetric image

element), and the dilation is a translation invariant dilation by a 2-D structuring element of

appropriate size. The larger the structuring element is, the more “jumpy” the trajectories

are allowed to be (however, this also increases the false alarm rate). The action of the

resulting motion connected operator is illustrated in Fig. 5.7.

The objects removed by the motion connected operator correspond to either residual

clutter from the intraframe processing step, or targets that move too fast with respect to

the sensor, which are not considered to be the primary targets of interest.

The overall method proves to be very effective and robust in detecting the targets of

interest. An example is shown in Fig. 5.8, which presents the outputs of the intraframe

processing step (intermediate result) and of the interframe processing step (final result)
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Figure 5.6: Intraframe processing. (a) Original frame. (b) Background removal using
grayscale opening by reconstruction, according to size criterion. (c) Grayscale reconstruc-
tion of the image in (b) using a marker that reflects the position criterion.

that correspond to the consecutive frames depicted in Fig. 5.5. For display purposes, the

contours of the detected targets are extracted by means of a morphological gradient operator

[34] and superimposed on the original frames. Note that interframe processing is essential

for removing leftover clutter from the intraframe processing step. Note also that the building

to the right is not detected in the last frame, since it is located at the periphery of the FOV.

5.3.3 Topological Correction of Brain Cortical Surfaces

One of the difficulties in automatic segmentation and mapping of the brain cortex is

establishing of the correct topology of the cortical surface [54, 81, 82, 94]. Ideally, the com-

bined hemispheres of the brain, joined by the bridge across the corpus callosum, should

map homeomorphically to a sphere. The problem encountered by several research groups

is that it is hard to simultaneously create an accurate representation of the cortex surface

(or the white matter/gray matter interface) and guarantee the correct topology. The most

important difficulty is the creation of handles (like that of a coffee mug), with associated

tunnels, in the representation of the surface. These features are not topologically consistent

with a sphere and make it impossible to establish a homeomorphism.

We have studied a new approach, based on connected operators, to the problem of

generating topologically correct surfaces. This method fits in the framework of the cortical

reconstruction algorithm of [94] and develops a new algorithm in the spirit of that of [81, 82].

Our work has led to a related method that uses some of the ideas described here [30, 31].
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Figure 5.7: Interframe processing. (a) Objects in three consecutive frames. (b) Spatio-
temporal connected components, according to the dilation-based connectivity class.
(c) Output of the motion connected operator, which eliminates spatio-temporal connected
components that do not span enough frames.

Our approach consists of an alternating sequential composition of thinnings and thick-

enings, which we refer to as the ASTT filter. This filter removes handles and fills in tunnels

in the membership function of a 3-D fuzzy segmentation of the white matter of the brain.

Each thinning is a supremum of 2-D grayscale area openings of a given size parameter,

which are applied on slices of the volume along a given axis. The supremum is taken over a

uniform sampling of all possible axis directions. The thinnings are responsible for removing

handles whose section area is less than the given size. Dually, each thickening is an infimum

of 2-D grayscale area closings of a given size along a given axis. The infimum is taken over

the same uniform sampling of directions mentioned above. The thickenings fill in tunnels

whose section area is less than the given size.

The proposed thinnings and thickenings are applied in serial, alternating fashion, where

one starts with a small size and then increases it, while switching between thinnings and

thickenings, until the desired result is achieved. The motivation behind this approach is

that it is possible for a given topological hole to be associated with a large tunnel and a

comparatively thin handle. In this case, it is advantageous to break the handle instead of

filling in the tunnel, since the former implies a smaller topological correction. The converse

applies to the case of a tight tunnel surrounded by a bulky handle. Alternating composition

of thinnings and thickenings of increasing size guarantees that the topological corrections

made lead to a small amount of distortion.
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(a)

(b)

Figure 5.8: Consecutive frames from (a) the intraframe processing step, and (b) the inter-
frame processing step.

This approach is innovative in several respects. First, it operates on both the back-

ground and the foreground of the membership function; in this way, handles and tunnels

are treated equivalently. Second, it operates on the grayscale values of the membership

function; this preserves subvoxel resolution, unlike binary methods that have been reported

in the literature. Third, as discussed above, it operates in an alternating sequential fashion,

minimizing overall distortion. Finally, a uniform sampling of orientations is considered for

each thinning/thickening so that the method is insensitive to orientation selection, unlike

other methods found in the literature.

To show the effectiveness of the proposed method, we have compared our results to

the results obtained using only median filters, which is the approach used in [94]. This

approach consists of iterating a 3 × 3 × 3 box median filter until a topologically correct

surface is obtained. Fig. 5.9 depicts a cross-sectional view of the topologically correct
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surfaces obtained with the ASTT filtering approach (red mesh) and the median filtering

approach (blue mesh), superimposed on the segmented white matter volume. Note that the

ASTT mesh follows the original surface more closely, especially along the sulci. Fig. 5.10

depicts the original surface, with the incorrect topology, and the topologically correct surface

obtained with the ASTT filtering approach.
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Figure 5.9: Cross-sectional view of the topologically correct surfaces obtained with the
ASTT filtering approach (red mesh) and the median filtering approach (blue mesh),
superimposed on the segmented white matter volume.

(a) (b)

Figure 5.10: Rendering of surfaces. (a) Original (incorrect topology). (b) Result of ASTT
filtering approach (correct topology).



Chapter 6

Multiscale Connectivity

The fundamental observation underlying the theory presented in this chapter is that it

is natural to consider an object to be more or less connected than another object; i.e., a

degree of connectivity is assigned to each object, which defines, equivalently, several levels of

connectivity of varying strictness. We show that this leads to a novel theory of connectivity,

to be referred to as multiscale connectivity.

The relevance of multiscale connectivity in image processing and analysis problems can

be illustrated with the help of a simple figure. It is reasonable to assign an increasing

degree of connectivity, from left to right, to the objects depicted in each row of Fig. 6.1.

Equivalently, we may view the objects depicted in each row of Fig. 6.1 as manifestations of

a unique object at different scales, with the scale decreasing from left to right (as remarked

in Chapter 1, the term scale is used here in the sense of resolution, which is the inverse of

the sense in which it is used, for example, in map making or in scale-space theory). Since

objects at different scales have different degrees of connectivity, this leads naturally to the

notion of multiscale connectivity.

This chapter is organized as follows. In Section 6.1, we deal with the axiomatic definition

of continuous multiscale connectivity. We propose the equivalent notions of connectivity

measure, which quantifies the degree of connectivity of an object, and connectivity pyramid,

which provides several levels of connectivity, parameterized by scale. We also show that

the fuzzy analogs of topological and graph-theoretic connectivity are examples of multiscale

connectivity, and we introduce the notions of σ-connectivity openings and σ-reconstruction

operators associated with a multiscale connectivity. In Section 6.2, we present the dis-

crete version of the theory of multiscale connectivity. In Section 6.3, we study examples
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Figure 6.1: It is reasonable to assign an increasing degree of connectivity, from left to
right, to the objects depicted in each row. These objects can alternatively be seen as
manifestations of the same object at different scales, with the scale decreasing from left to
right. This leads naturally to the notion of multiscale connectivity.

of multiscale connectivities generated by multiscale morphological operators, which include

the cases of clustering pyramids and contraction pyramids. In Section 6.4, we study second-

generation multiscale connectivities. In Section 6.5, we define a few useful multiscale tools

based on multiscale connectivities, including pyramid decompositions, hierarchical segmen-

tation, hierarchical clustering, and multiscale features, and present application examples

using real discrete images. In Section 6.6, we investigate the notion of multiscale hypercon-

nectivity. Finally, in Section 6.7, we present a theory of multiscale connected operators.

6.1 Continuous Multiscale Connectivity

The idea of multiscale connectivity arises naturally from the observation that the con-

nectivity of an object depends on the particular scale at which it is observed. Dependence

of the notion of connectivity on scale can be characterized by either a measure of connec-

tivity, which quantifies the degree of connectivity of an object, or by a connectivity class

that depends on scale. In this section, we will see how these two approaches to multiscale

connectivity can be axiomatized. Moreover, we will show that they are equivalent.

The following definition introduces the concept of a connectivity measure on a lattice L.
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6.1.1 Definition. Let L be a lattice with sup-generating family S. A function ϕ: L → IR

is said to be a connectivity measure on L if:

(i) ϕ(O) = ϕ(x) = ∞, for x ∈ S,

(ii) for a family {Aα} in L such that
∧
Aα �= O, we have that ϕ(

∨
Aα) ≥ ∧ϕ(Aα). "

Given A ∈ L, ϕ(A) indicates the degree of connectivity of A. If ϕ(A) = ∞, A is said to

be fully connected, whereas if ϕ(A) = −∞, A is said to be fully disconnected. Intermediate

connectivity, or σ-connectivity, is defined by saying that A is σ-connected if ϕ(A) ≥ σ, for

σ ∈ IR. Of course, if σ ≥ τ , then σ-connectivity implies τ -connectivity.

Axiom (i) of Definition 6.1.1 requires the zero element and the sup-generators to be fully

connected. On the other hand, axiom (ii) requires that the degree of connectivity of the

supremum of an “intersecting” family in L must not become smaller than the least degree

of connectivity of the individual elements.

A connectivity measure ϕ is an IR-fuzzy subset of P(L) (see Section 2.5 for basic defini-

tions regarding fuzzy sets). In other words, a connectivity measure may be seen as a fuzzy

connectivity class. We also remark that ϕ is a signed non-additive measure, also known in

the literature as a fuzzy measure [28].

We define the σ-sections of a connectivity measure ϕ on L by Xσ(ϕ) = {A ∈ L | ϕ(A) ≥
σ}, for σ ∈ IR. Hence, the σ-section of ϕ contains the σ-connected elements of L.

A connectivity measure ϕ on L is said to be strong if the greatest element I of L is fully

connected; i.e., if ϕ(I) = ∞. In addition, if L = P(E), with E = IRn or E = ZZn, we say

that ϕ is translation-invariant if ϕ(A) = ϕ(Ah), for all h ∈ E.

Given a connectivity class C in L, we can define a simple binary connectivity measure ϕ

on L, by letting ϕ(A) = ∞, if A ∈ C, and ϕ(A) = −∞, if A �∈ C. In other words, each A ∈ L
is either fully connected, if A ∈ C, or fully disconnected, if A �∈ C. Hence, connectivity classes

correspond to single-scale connectivities, where the degree of connectivity is all-or-nothing;

i.e., there is no intermediate connectivity.

6.1.2 Example. Consider the lattice L = P(ZZ2) with the points as sup-generators. It can

be easily verified that the function given by

ϕ(A) =


∞, if A is 4-adjacency connected

0, if A is 8- but not 4-adjacency connected

−∞, otherwise

, (6.1)

for A ∈ L, defines a strong translation-invariant connectivity measure on P(ZZ2). ♦
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The following result shows that the class of connectivity measures is closed under certain

change-of-scale transformations.

6.1.3 Proposition. If ϕ is a connectivity measure on a lattice L, and f : IR → IR is a

nondecreasing and right-continuous function such that f(∞) = ∞, then the composition

f(ϕ(·)) is a connectivity measure on L. �

Proof. Let ϕ′ = f(ϕ(·)). From the assumption that f(∞) = ∞, it follows that ϕ′ satis-

fies axiom (i) of Definition 6.1.1. To show that axiom (ii) is satisfied as well, let {Aα}
be a family in L such that

∧
Aα �= O. We have that ϕ(

∨
Aα) ≥ ∧ϕ(Aα), so that

ϕ′(
∨
Aα) = f(ϕ(

∨
Aα)) ≥ f(

∧
ϕ(Aα)), since f is nondecreasing. But, it is easy to ver-

ify that every nondecreasing and right-continuous function f commutes with infimum; i.e.,

f(
∧
xα) =

∧
f(xα), where {xα} ⊆ IR. Hence, ϕ′(

∨
Aα) ≥ f(

∧
ϕ(Aα)) =

∧
f(ϕ(Aα)) =∧

ϕ′(Aα). Q.E.D.

Next, we give examples of application of the above proposition.

6.1.4 Example.

(a) If ϕ is a given connectivity measure on L and a, b ∈ IR, with a > 0, then aϕ+ b is also

a connectivity measure on L, since the function f(x) = ax + b, x ∈ IR, satisfies the

requirements of Proposition 6.1.3. In other words, the class of connectivity measures

is closed under linear change-of-scale transformations.

(b) Consider functions fσ, fσ: IR → IR given by

fσ(x) =

 −∞, if x < σ

x, if x ≥ σ
, fσ(x) =

 x, if x < σ

∞, if x ≥ σ
, (6.2)

where σ ∈ IR. It is easy to see that fσ, fσ satisfy the requirements of Proposition 6.1.3.

Thus, given a connectivity measure ϕ on L, we can define connectivity measures ϕσ, ϕσ

on L given by:

ϕσ(A) =

 −∞, if ϕ(A) < σ

ϕ(A), if ϕ(A) ≥ σ
, ϕσ(A) =

 ϕ(A), if ϕ(A) < σ

∞, if ϕ(A) ≥ σ
, (6.3)

for A ∈ L. Note that ϕσ is the connectivity measure obtained by declaring the lattice

elements with degree of connectivity less than σ to be fully disconnected, without

affecting the other elements. On the other hand, ϕσ is such that the σ-connected

lattice elements become fully connected, while all other elements are not affected. ♦
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The next result shows that the class of connectivity measures is closed with respect to

pointwise infimum.

6.1.5 Proposition. Let {ϕα} be an arbitrary family of connectivity measures on a lat-

tice L. The pointwise infimum (
∧
ϕα)(A) =

∧
ϕα(A), for A ∈ L, is a connectivity measure

on L. �

Proof. Let ϕ =
∧
ϕα. Clearly, ϕ satisfies axiom (i) of Definition 6.1.1. To show that

axiom (ii) is satisfied as well, let {Aβ} be a family in L such that
∧
Aβ �= O. For each

index α, we have that ϕα(
∨
Aβ) ≥ ∧β{ϕα(Aβ)}. Hence,

ϕ
(∨

Aβ

)
=
∧
α

ϕα

(∨
Aβ

)
≥
∧
α

∧
β

ϕα(Aβ) =
∧
β

∧
α

ϕα(Aβ) =
∧
β

ϕ(Aβ) , (6.4)

which gives the desired result. Q.E.D.

The pointwise supremum of connectivity measures is not in general a connectivity mea-

sure. As a counterexample, let L = P(IR), with the points as sup-generators, and let

A = [0, 2] and B = [1, 3]. Take ϕ1(∅) = ϕ1({v}) = ϕ1(A) = ∞, for v ∈ IR, while ϕ1

takes on the value −∞ everywhere else, and ϕ2(∅) = ϕ2({v}) = ϕ2(B) = ∞, for v ∈ IR,

while ϕ2 takes on the value −∞ everywhere else. It can be easily verified that ϕ1 and

ϕ2 define connectivity measures on P(IR) but ϕ1 ∨ ϕ2 does not: we have A ∩ B �= ∅, but

(ϕ1 ∨ϕ2)(A∪B) = −∞ �≥ min{(ϕ1 ∨ϕ2)(A), (ϕ1 ∨ϕ2)(B)} = ∞, which contradicts axiom

(ii) of connectivity measures.

Let M(L) be the set of all connectivity measures defined on a lattice L, with a fixed

sup-generating family. Note that M(L) is a poset under the product partial order ϕ ≤ ϕ′

if ϕ(A) ≤ ϕ′(A), for all A ∈ L. Moreover, we have the following result.

6.1.6 Proposition. Given a lattice L, M(L) is a lattice, under the product partial order. �

Proof. From Proposition 6.1.5, it is clear that M(L) is an inf semi-lattice under the

product partial order. Moreover, the connectivity measure ϕ(A) = ∞, for all A ∈ L, is

the greatest element of M(L). From Proposition 2.1.1, it follows that M(L) is a complete

lattice under the product partial order. Q.E.D.

A concept intimately related to connectivity measures is that of a connectivity pyramid.

This is introduced by the following definition.
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6.1.7 Definition. Let L be a lattice with sup-generating family S. A connectivity pyramid

on L is a mapping C: IR → P(L) such that:

(i) C(σ) is a connectivity class in L, for each σ ∈ IR,

(ii) C(σ) ⊆ C(τ), if σ ≥ τ ,

(iii) C(σ) =
⋂
τ<σC(τ) , for each σ ∈ IR. "

The connectivity class C(σ) is said to be the σ-level or the σ-connectivity class of C,

and it may be thought of as the connectivity class assigned at scale σ. For A ∈ L, if A

is connected at all scales, i.e., if A ∈ ⋂σ∈IR C(σ), then A is said to be fully connected,

whereas if A is not connected at any scale, i.e., if A �∈ ⋃σ∈IR C(σ), then A is said to be

fully disconnected. Moreover, A is said to be σ-connected if A ∈ C(σ), for σ ∈ IR. Note

that
⋂
σ∈IR C(σ) is a connectivity class in L (since the set of all connectivity classes is closed

under intersection – see Prop. 4.1.4(b)), so that the fully connected elements enjoy the same

connectivity properties as the ones associated with a connectivity class (e.g., the supremum

of overlapping fully connected elements is fully connected). However, the same does not

apply to the fully disconnected elements.

Axiom (ii) of Definition 6.1.7 requires that the σ-levels of a connectivity pyramid be

nested, so that fewer elements are connected as one moves upward in the pyramid (i.e., a

connected element at a given level of the pyramid may not be connected at a higher level).

In other words, more objects tend to be connected at small scales than at large scales. On

the other hand, the semi-continuity axiom (iii) provides a smoothness constraint on the

levels of a connectivity pyramid. Note that axiom (iii) actually implies axiom (ii).

A connectivity pyramid C on L is said to be strong if each σ-connectivity class is strong;

i.e., if I ∈ C(σ), for all σ ∈ IR (so that I is fully connected). In addition, if L = P(E), with

E = IRn or E = ZZn, we say that C is translation-invariant if each σ-connectivity class is

translation-invariant; i.e., if A ∈ C(σ) ⇔ Ah ∈ C(σ), for all h ∈ E, σ ∈ IR.

Given a connectivity class C in L, we can define a simple connectivity pyramid C on L,

by setting C(σ) = C, for all σ ∈ IR. In this case, each A ∈ L is either fully connected, if

A ∈ C, or fully disconnected, if A �∈ C. Hence, connectivity classes correspond to single-scale

connectivities, where the connectivity is the same at all scales.
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Next, we give a characterization of the set Y(L) of all connectivity pyramids in a

lattice L, with a fixed sup-generating family. Let us introduce the following sets:

Y0(L) = Fun(IR,P(L)), (6.5)

Y1(L) = {F ∈ Y0(L) | F satisfies axiom (i) of a connectivity pyramid}, (6.6)

Y2(L) = {F ∈ Y0(L) | F satisfies axioms (i) and (ii) of a connectivity pyramid}. (6.7)

Note that Y(L) ⊆ Y2(L) ⊆ Y1(L) ⊆ Y0(L). Note also that Y0(L) is a lattice, under

the product inclusion order F ≤ F′ if F(σ) ⊆ F′(σ), for σ ∈ IR, with supremum and

infimum given by the pointwise union (
∨
Fα)(σ) =

⋃
Fα(σ), for σ ∈ IR, and the pointwise

intersection (
∧
Fα)(σ) =

⋂
Fα(σ), for σ ∈ IR, respectively.

6.1.8 Proposition. Let L be a lattice, and let
∨

and
∧

denote the supremum and infimum

operations in lattice Y0(L), respectively.

(a) The operator Φ on Y0(L) given by

Φ(F)(σ) = φ(F(σ)), σ ∈ IR, (6.8)

for F ∈ Y0(L), with φ as in (4.7), is a closing on Y0(L), with invariance domain

Inv(Φ) = Y1(L).

(b) Y1(L) is an underlattice of Y0(L), with infimum
∧
Fα and supremum Φ(

∨
Fα).

(c) Y2(L) is a sublattice of Y1(L), and therefore an underlattice of Y0(L), with infimum∧
Fα and supremum Φ(

∨
Fα).

(d) The operator Ω on Y1(L) given by

Ω(F)(σ) =
⋂
τ<σ

F(τ), σ ∈ IR, (6.9)

for F ∈ Y1(L), is a morphological filter on Y1(L), while the restriction Ω′ of Ω to

Y2(L) is a closing on Y2(L). Moreover, we have that Inv(Ω) = Inv(Ω′) = Y(L).

(e) Y(L) is an underlattice of both Y1(L) and Y2(L), and therefore of Y0(L), with infimum∧
Cα and supremum Ω Φ(

∨
Cα). �
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Proof. (a): That Φ is a closing on Y0(L) follows directly from the fact that φ is a closing

on P(L). Now, Φ(F) = F ⇔ φ(F(σ)) = F(σ), for all σ ∈ IR ⇔ F(σ) ∈ Inv(φ) = Ccl(L),

for all σ ∈ IR ⇔ F ∈ Y1(L). Hence, Inv(Φ) = Y1(L).

(b): This follows directly from part (a) and Proposition 2.2.2(a).

(c): The proof of this is obvious.

(d): Clearly, Ω is increasing. To show that Ω is idempotent, note that, for each σ ∈ IR,

we have that ΩΩ(F)(σ) =
⋂
τ<σ Ω(F)(τ) =

⋂
τ<σ

⋂
τ ′<τ F(τ ′). Now, it is easy to verify

that
⋂
b<a

⋂
c<bAc =

⋂
b<aAb, for any indexed family of sets {Aa | a ∈ IR}. Hence,

ΩΩ(F)(σ) =
⋂
τ<σ F(τ) = Ω(F)(σ), for all σ ∈ IR; i.e., ΩΩ = Ω, as required. This shows

that Ω is a morphological filter on Y1(L). To show that the restriction Ω′ is a closing on

Y2(L), we need to show that Ω is extensive on Y2(L). For any F ∈ Y2(L), we have that

F(τ) ⊇ F(σ), for all τ < σ, so that Ω(F)(σ) =
⋂
τ<σ F(τ) ⊇ F(σ), for all σ ∈ IR; i.e.,

Ω(F) ≥ F, as required. Now, F ∈ Y1(L) or F ∈ Y2(L) and Ω(F) = F imply that F satisfies

all three axioms of a connectivity pyramid, so that F ∈ Y(L). Conversely, if C ∈ Y(L) then,

by axiom (iii) of a connectivity pyramid, we have that Ω(C)(σ) =
⋂
τ<σC(τ) = C(σ), for

all σ ∈ IR, so that Ω(C) = C. Hence, Inv(Ω) = Inv(Ω′) = Y(L).

(e) From part (d) and Proposition 2.2.2(a), Y(L) is an underlattice of Y2(L), with

the same infimum
∧
Cα, and supremum Ω′(

∨2 Cα) = Ω(
∨2 Cα), where

∨2 denotes the

supremum in Y2(L). But, since Y2(L) is a sublattice of Y1(L), it follows that Y(L) is also

an underlattice of Y1(L), with the same infimum
∧
Cα and supremum Ω(

∨1 Cα), where∨1 is the supremum in Y1(L). Now, from part (b), we have that
∨1 Fα = Φ(

∨
Fα); hence,

the supremum in Y(L) is given by Ω Φ(
∨
Cα). Q.E.D.

The previous result has some important consequences:

• The sets Y0(L), Y1(L), Y2(L), and Y(L) are complete lattices under the product

inclusion order.

• The lattices Y0(L), Y1(L), Y2(L), and Y(L) share the same infimum, namely the

pointwise intersection.

• Since, for an idempotent operator ψ, Inv(ψ) = Range(ψ), it follows that Y1(L) =

Range(Φ) and Y(L) = Range(Ω) = Range(Ω′).

In particular, we derive the following conclusions about the set Y(L) of connectivity

pyramids. The set Y(L) is a complete lattice under the product inclusion order C ≤ C′ if
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C(σ) ⊆ C′(σ), for all σ ∈ IR. The infimum in Y(L) is given by pointwise intersection. It

follows that, given an arbitrary family {Cα} of connectivity pyramids on L, then C, given

by C(σ) =
⋂
Cα(σ), for all σ ∈ IR, is a connectivity pyramid on L. Moreover, given an

F such that F ∈ Y1(L) or F ∈ Y2(L), one obtains a connectivity pyramid C = Ω(F) by

applying Ω to F. In addition, given an F ∈ Y0(L), one obtains a connectivity pyramid

C = Ω Φ(F) by applying Φ, and then Ω, to F.

Connectivity pyramids are closely related to connectivity measures. Given a connectivity

measure on L, one can define a unique connectivity pyramid on L, and vice-versa. In

addition, this bijection is order-preserving. This is shown by the following theorem.

6.1.9 Theorem. Let L be a lattice with sup-generating family S. The lattice M(L) of

connectivity measures on L is isomorphic to the lattice Y(L) of connectivity pyramids on L.

Moreover, the isomorphism Γ: M(L) → Y(L) is given by

Γ(ϕ)(σ) = {A ∈ L | ϕ(A) ≥ σ}, σ ∈ IR, (6.10)

with inverse Γ−1: Y(L) → M(L), given by

Γ−1(C)(A) =
∨

{σ ∈ IR | A ∈ C(σ)}, A ∈ L. (6.11)

�

Proof. First, we show that Γ is a mapping from M(L) into Y(L); i.e., we show that C =

Γ(ϕ), where ϕ ∈ M(L), defines a connectivity pyramid on L. Note that ϕ(O) = ϕ(x) = ∞,

for all x ∈ S, implies that O ∈ C(σ) and S ⊆ C(σ), for all σ ∈ IR. Now, consider a family

{Aα} in C(σ), such that
∧
Aα �= O. Note that ϕ(Aα) ≥ σ, for each index α. Since ϕ is a

connectivity measure, we have that ϕ(
∨
Aα) ≥ ∧ϕ(Aα) ≥ σ ⇒ ∨Aα ∈ C(σ). Hence, C(σ)

is a connectivity class, for all σ ∈ IR, which shows axiom (i) of Definition 6.1.7. Axiom (ii)

follows easily from (6.10), while axiom (iii) follows from the fact that A ∈ C(σ) ⇔ ϕ(A) ≥
σ ⇔ ϕ(A) ≥ τ, ∀ τ < σ ⇔ A ∈ C(τ), ∀ τ < σ ⇔ A ∈ ⋂ τ<σC(τ), for each σ ∈ IR.

Now, we show that Γ−1 defines a mapping from Y(L) into M(L); i.e., we show that

ϕ = Γ−1(C), where C ∈ Y(L), defines a connectivity measure on L. Note that O ∈ C(σ)

and S ⊆ C(σ), for all σ ∈ IR, implies that ϕ(O) = ϕ(x) =
∨

IR = ∞, for all x ∈ S, which

shows axiom (i) of Definition 6.1.1. To show axiom (ii), note that, since C(·) is decreasing,

we have that ϕ(A) ≥ σ ⇔ A ∈ C(τ), ∀ τ < σ, for all σ ∈ IR ∪ {∞}. Consider a family

{Aα} in L such that
∧
Aα �= O, and let σ =

∧
ϕ(Aα). If σ = −∞, obviously ϕ(

∨
Aα) ≥ σ,
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and we are done. Otherwise, for each index α, ϕ(Aα) ≥ σ ⇒ Aα ∈ C(τ), ∀ τ < σ ⇒ ∨Aα ∈
C(τ), ∀ τ < σ, which implies that ϕ(

∨
Aα) ≥ σ, as required.

Now, we show that the lattices M(L) and Y(L) are isomorphic. The mappings Γ and Γ−1

are clearly order-preserving. It therefore remains to be shown that Γ and Γ−1 are the inverses

of each other. Let ϕ ∈ M(L). We have that Γ−1Γ(ϕ)(A) =
∨{σ ∈ IR | A ∈ Γ(ϕ)(σ)} =∨{σ ∈ IR | ϕ(A) ≥ σ} = ϕ(A), for all A ∈ L. Hence, Γ−1Γ(ϕ) = ϕ. Now, let C ∈ Y(L).

First, we show that Γ−1(C)(A) ≥ σ ⇔ A ∈ C(σ), for σ ∈ IR. The reverse implication

is obvious. To show the direct implication, suppose that A �∈ C(σ) =
⋂
τ<σC(τ). This

implies that A �∈ C(τ), for some τ < σ, so that Γ−1(C)(A) �≥ σ, establishing the desired

result. It follows that ΓΓ−1(C)(σ) = {A ∈ L | Γ−1(C)(A) ≥ σ} = C(σ), for all σ ∈ IR.

Hence, ΓΓ−1(C) = C. Q.E.D.

The isomorphism between lattices M(L) and Y(L) is of course a bijection; i.e., to each

connectivity measure ϕ on L, there is an associated equivalent connectivity pyramid C

on L, which consists of the σ-sections of ϕ. Conversely, ϕ can be regenerated by “stacking

up” the σ-levels of C. Hence, a multiscale connectivity on L can be equivalently specified

by either method. Depending on the circumstances, one method can be more convenient

than the other. Therefore, we often say that L is furnished with a multiscale connectivity

system (ϕ,C) ∈ M(L) × Y(L), such that ϕ and C are equivalent under the bijection given

in Theorem 6.1.9.

Note that the previous definitions regarding σ-connectivity, given by means of connec-

tivity measures and connectivity pyramids, agree with each other. For example, we have

that ϕ(A) ≥ σ ⇔ A ∈ C(σ), in which case A is σ-connected, for σ ∈ IR. In addi-

tion, ϕ(A) = ∞ ⇔ A ∈ ⋂σ∈IR C(σ), in which case A is fully connected. Similarly,

ϕ(A) = −∞ ⇔ A �∈ ⋃σ∈IR C(σ), in which case A is fully disconnected. Moreover, we have

that ϕ is strong (resp. translation-invariant) if and only if C is strong (resp. translation-

invariant), in which case (ϕ,C) is said to be a strong (resp. translation-invariant) multiscale

connectivity system.

Clearly, the pair (Γ,Γ−1) of operators defined in Theorem 6.1.9 is an adjunction between

M(L) and Y(L). The next result shows that (Γ,Γ−1) is an adjunction between M(L) and

Y2(L) as well. Furthermore, the resulting closing ΓΓ−1 on Y2(L) is equal to the closing Ω′

of Proposition 6.1.8(d).
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6.1.10 Proposition. Let Γ and Γ−1 be defined as in (6.10) and (6.11), respectively. The

pair (Γ,Γ−1) defines an adjunction between M(L) and Y2(L). In addition, ΓΓ−1 = Ω′,

where Ω′ is the closing on Y2(L) defined in Proposition 6.1.8(d). �

Proof. First, we show that Γ−1 defines an operator from Y2(L) into M(L); i.e., we show

that ϕ = Γ−1(F), where F ∈ Y2(L), defines a connectivity measure on L. The proof is

essentially the same as the corresponding step in the proof of Theorem 6.1.9. Note that

ϕ(A) =
∨{σ ∈ IR | A ∈ F(σ)}, for A ∈ L. We have that O ∈ F(σ) and S ⊆ F(σ), for

all σ ∈ IR; hence, ϕ(O) = ϕ(x) =
∨

IR = ∞, for all x ∈ S, which shows axiom (i) of

Definition 6.1.7. To show axiom (ii), note that, since F(σ) is decreasing, we have that

ϕ(A) ≥ σ ⇔ A ∈ F(τ), ∀ τ < σ, for all σ ∈ IR ∪ {∞}. Consider a family {Aα} in L such

that
∧
Aα �= O, and let σ =

∧
φ(Aα). If σ = −∞, then φ(

∨
Aα) ≥ σ and we are done.

Otherwise, for each index α, φ(Aα) ≥ σ ⇒ Aα ∈ F(τ), ∀ τ < σ ⇒ ∨Aα ∈ F(τ), ∀ τ < σ,

which implies that φ(
∨
Aα) ≥ σ, as required.

Now, we show that (Γ,Γ−1) defines an adjunction between M(L) and Y2(L); i.e., for

ϕ ∈ M(L) and F ∈ Y2(L), we have that Γ−1(F) ≤ ϕ ⇔ F ≤ C, where C = Γ(ϕ) is

the connectivity pyramid associated with the connectivity measure ϕ via Γ. Assume that

Γ−1(F) ≤ ϕ. For all A ∈ F(σ), we have that σ ≤ Γ−1(F)(A) ≤ ϕ(A). But ϕ(A) ≥ σ implies

that A ∈ C(σ). Since this is true for all σ ∈ IR, we have that F ≤ C. Conversely, assume

that F ≤ C. Clearly, we have that {σ ∈ IR | A ∈ F(σ)} ⊆ {σ ∈ IR | A ∈ C(σ)}. Hence,

Γ−1(F) =
∨{σ ∈ IR | A ∈ F(σ)} ≤ ∨{σ ∈ IR | A ∈ C(σ)} = Γ−1(C) = ϕ.

Finally, we show that ΓΓ−1 = Ω′ on Y2(L). By using the fact that two closings are

equal if and only if they have the same domain of invariance (see Proposition 2.2.1(b)), and

Proposition 6.1.8(d), it is sufficient to show that Inv(ΓΓ−1) = Y(L). Let F ∈ Y2(L). We

have shown above that Γ−1(F) ∈ M(L), which implies that ΓΓ−1(F) ∈ Y(L). Therefore,

ΓΓ−1(F) = F ⇒ F ∈ Y(L). Conversely, let C ∈ Y(L). Since Γ is the inverse of Γ−1, we get

that ΓΓ−1(C) = C; i.e., C ∈ Inv(ΓΓ−1). Q.E.D.

The previous result implies that, given F ∈ Y2(L), one obtains a multiscale connectivity

system (ϕ,C) on L by setting ϕ = Γ−1(F) and C = Ω′(F).

Note that, given an F ∈ Y1(L), one does not in general obtain a connectivity measure

by applying Γ−1 to F (even though, as remarked previously, one does obtain a connectivity

pyramid C = Ω(F) by applying Ω to F). As a counterexample, let L = P(IR), with the

points as sup-generators. Let C1 be the connectivity class in P(IR) containing the empty set,
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the points, and set C = [0, 2]. Similarly, let C2 be the connectivity class in P(IR) containing

the empty set, the points, and set D = [1, 3]. Define F ∈ Y1(L) by setting F(σ) = C1, if σ

is rational, and F(σ) = C2, otherwise. Let ξ = Γ−1(F); i.e., ξ(A) =
∨{σ ∈ IR | A ∈ F(σ)},

for A ∈ P(IR). Clearly, ξ(C) = ξ(D) = ∞, but ξ(C ∪D) = −∞ �≥ min{ ξ(C), ξ(D)} = ∞,

even though C ∩D �= ∅, which contradicts axiom (iii) of Definition 6.1.1. Therefore, ξ is

not a connectivity measure.

Recall from Sections 3.3 and 3.4 the notions of fuzzy topological τ -connectivity and

fuzzy graph-theoretic τ -connectivity, respectively. We show next that these notions give

rise to multiscale connectivities, which provide multiscale extensions of the classical notions

of topological and graph-theoretic connectivity, respectively. In the following result, recall

from Section 2.5 the concept of a fuzzy topological space generated by a topology pyramid.

6.1.11 Proposition. (Multiscale Topological Connectivity). Let L = P(E) with the points

as sup-generators. Let P = {Gτ | τ ∈ IR � {∞}} be a topology pyramid on E, and let

(E,∆(P)) be the IR-fuzzy topological space generated by P. Then, C: IR → P(P(E)),

given by

C(τ) = {A ⊆ E | A is τ -connected in (E,∆(P))}, τ ∈ IR, (6.12)

defines a connectivity pyramid on P(E). �

Proof. From Proposition 3.3.5, we have that C(τ) = {A ⊆ E | A is connected in (E,G−τ )},

for τ ∈ IR. It follows immediately that C(τ) is a connectivity class, for all τ ∈ IR, which

shows axiom (i) of a connectivity pyramid. From the fact that G−τ2 ⊆ G−τ1 , for τ2 ≤ τ1,

and the observation that a connected set, according to a topology G1, is connected in a

coarser topology G2 ⊆ G1, we conclude that C(·) is a decreasing mapping, which shows

axiom (ii) of a connectivity pyramid. We now show axiom (iii). Given τ ∈ IR, the inclusion

C(τ) ⊆ ⋂ s<τ C(s) follows directly from the fact that C(·) is decreasing. We show the

converse inclusion by establishing the contrapositive. Suppose that A �∈ C(τ); i.e., there

is a separation (G1, G2) of A in G−τ . Since P is a topology pyramid, we have that G−τ =⋃
s>−τ Gs, which implies that there is a τ0 > −τ such thatG1, G2 ∈ Gτ0 , so that A �∈ C(−τ0).

In other words, there is an s < τ , namely s = −τ0, such that A �∈ C(s). But this implies

that A �∈ ⋂ s<τ C(s), as required. Q.E.D.

Therefore, in a multiscale topological connectivity framework, the connected sets at

scale τ correspond to the τ -connected sets in (E,∆(P)), which in turn correspond to the
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connected sets in the topological space (E,G−τ ), for τ ∈ IR (so that the τ -level topology in P

defines connectivity at scale −τ). Furthermore, it is easy to verify that A is fully connected,

i.e., A ∈ ⋂τ∈IR C(τ), if and only if A is fully connected (∞-connected) in (E,∆(P)). A

similar remark applies to a fully disconnected set.

The discrete analog of the previous result is given next.

6.1.12 Proposition. (Multiscale Graph-Theoretic Connectivity). Let L = P(V ) with the

points as sup-generators, where V is a finite set. Let G = (V, σ) be an IR-fuzzy graph.

Then, C: IR → P(P(V )), given by

C(τ) = {U ⊆ V | U is τ -connected in G = (V, σ)}, τ ∈ IR, (6.13)

defines a connectivity pyramid on P(V ). �

Proof. From Proposition 3.4.7, we have that C(τ) = {U ⊆ V | U is connected in Gτ =

(V,Xτ (σ))}, for τ ∈ IR. It follows immediately that C(τ) is a connectivity class, for all

τ ∈ IR, which shows axiom (i) of a connectivity pyramid. From the fact that Gτ1 is a

sub-graph of Gτ2 , for τ1 ≥ τ2, and the observation that a connected set in a subgraph G1 of

G2 is connected in G2, we conclude that C(·) is a decreasing mapping, which shows axiom

(ii) of a connectivity pyramid. We now show axiom (iii). Given τ ∈ IR, the inclusion

C(τ) ⊆ ⋂ s<τ C(s) follows directly from the fact that C(·) is decreasing. We show the

converse inclusion by establishing the contrapositive. Suppose that U �∈ C(τ); i.e., there is

a pair of points v, w ∈ U such that s(Π) < τ , for all paths Π ⊆ U between v and w. Since

V is finite, we have that U is finite and the set of all paths in U is finite. This means that

there is an s such that s(Π) < s < τ , for all paths Π ⊆ U between v and w, which implies

that U �∈ C(s). But this implies that A �∈ ⋂ s<τ C(s), as required. Q.E.D.

Therefore, in a multiscale graph-theoretic connectivity framework, the connected sets

at scale τ correspond to the τ -connected sets in G = (V, σ), which in turn correspond to

the connected sets in the graph Gτ = (V,Xτ (σ)), for τ ∈ IR (so that the τ -level graph of G

defines connectivity at scale τ). Furthermore, it is easy to verify that A is fully connected,

i.e., A ∈ ⋂τ∈IR C(τ), if and only if A is fully connected (∞-connected) in G = (V, σ). A

similar remark applies to a fully disconnected element.

We conclude this section by studying the multiscale analogs of connectivity openings

and reconstruction operators (see Sections 4.1.2 and 4.1.3, respectively).
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Given a multiscale connectivity system (ϕ,C) on L, the σ-connectivity openings associ-

ated with (ϕ,C) are given by:

γσ,x(A) =
∨

{C ∈ C(σ) | x ≤ C ≤ A}, σ ∈ IR, x ∈ S, (6.14)

for A ∈ L. It is clear that Inv(γσ,x) = C(σ) ∩ M∗(x) = {C ∈ L | C ∈ C(σ), C ≥ x}, for

σ ∈ IR and x ∈ S, so that

C(σ) =
⋃
x∈S

Inv(γσ,x) =
⋃
x∈S

{γσ,x(A) | A ∈ L}, σ ∈ IR. (6.15)

Given a σ ∈ IR, a σ-connected component or σ-grain of A ∈ L is a σ-connected element

C ∈ L such that C ≤ A and there is no σ-connected element C ′ ∈ L with C ≤ C ′ ≤ A. If C

is a σ-connected component of A, we write C �σ A. It is clear that, if x ≤ A, then γσ,x(A)

is the σ-connected component of A ∈ L, marked by x, and that the family of σ-grains of A

is given by Cσ(A) = {γσ,x(A) | x ≤ A}, for σ ∈ IR. The mapping cA: IR × S(A) → L, given

by cA(σ, x) = γσ,x(A), for σ ∈ IR and x ∈ S(A), is the hierarchical partition of connected

components (HPCC) of A. Note that, for each σ ∈ IR, cA(σ, ·) is a partition of A, in the

sense of Definition 4.1.7. These are called the σ-levels or the σ-partitions of the HPCC cA

of A, for σ ∈ IR. We study these hierarchical partitions in more detail in Section 6.5.2.

Next, we give the multiscale version of Theorem 4.1.9. Recall the definition of the

characteristic opening ψ◦ associated with an operator ψ, given by (2.15).

6.1.13 Theorem. Let L be a lattice with sup-generating family S. For a given C ∈ Y(L),

let {γσ,x | σ ∈ IR, x ∈ S} be the σ-connectivity openings associated with C, given by

(6.14). Then,

(i) {γσ,x | x ∈ S} is a family of connectivity openings on L, for each σ ∈ IR.

(ii) γσ,x ≤ γτ,x, if σ ≥ τ , for each x ∈ S.

(iii) γσ,x =
(∧
τ<σ γτ,x

)◦, for each σ ∈ IR, x ∈ S.

Conversely, let X (L) denote the set of all families of openings {γσ,x | σ ∈ IR, x ∈ S} that

satisfy properties (i)–(iii) above. For {γσ,x | σ ∈ IR, x ∈ S} ∈ X (L), let C be given by

(6.15). Then, C is a connectivity pyramid on L; i.e., C ∈ Y(L). Moreover, its family of

σ-connectivity openings coincides with {γσ,x | σ ∈ IR, x ∈ S}. Hence, (6.14) and (6.15)

establish a bijection between Y(L) and X (L). �
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Proof. Property (i) is obvious. To show property (ii), note that, if σ ≥ τ , we have that

Inv(γσ,x) = C(σ) ∩ M∗(x) ⊆ C(τ) ∩ M∗(x) = Inv(γτ,x), for each x ∈ S. The desired

result then follows from Proposition 2.2.1(a). To show property (iii), for given σ ∈ IR

and x ∈ S, let ψ =
∧
τ<σ γτ,x. Note that ψ is an increasing and anti-extensive operator.

Moreover, Inv(ψ) =
⋂
τ<σ Inv(γτ,x), due to the anti-extensivity of each γτ,x. It follows

from Corollary 2.2.7 that Inv(ψ◦) = Inv(ψ) =
⋂
τ<σ Inv(γτ,x) =

⋂
τ<σ(C(τ) ∩ M∗(x)) =

(
⋂
τ<σC(τ)) ∩ M∗(x) = C(σ) ∩ M∗(x) = Inv(γσ,x). But, from Proposition 2.2.5, ψ◦ is an

opening, so that we can use Proposition 2.2.1(a) to conclude that γσ,x = ψ◦ =
(∧
τ<σ γτ,x

)◦,

as required.

Now, assume that {γσ,x | σ ∈ IR, x ∈ S} ∈ X (L). We show that C, given by (6.15),

satisfies axioms (i)–(iii) of a connectivity pyramid. Axiom (i) follows directly from property

(i). Axiom (ii) follows from property (ii): if σ ≥ τ , for each x ∈ S, we have that γσ,x ≤
γτ,x ⇒ Inv(γσ,x) ⊆ Inv(γτ,x) ⇒ C(σ) =

⋃
x∈S Inv(γσ,x) ⊆ ⋃x∈S Inv(γτ,x) = C(τ), where

we used Proposition 2.2.1(a). To show axiom (iii), first note that, from property (i), we

know that Inv(γσ,x) = C(σ) ∩ M∗(x), for all σ ∈ IR. For given σ ∈ IR and x ∈ S, let

ψ =
∧
τ<σ γτ,x. From property (iii), we have that γσ,x = ψ◦, so that Inv(γσ,x) = Inv(ψ◦) =⋂

τ<σ Inv(γτ,x) =
⋂
τ<σ(C(τ) ∩ M∗(x)) = (

⋂
τ<σC(τ)) ∩ M∗(x). Hence, we have that

C(σ) =
⋃
x∈S Inv(γσ,x) =

⋃
x∈S((

⋂
τ<σC(τ)) ∩ M∗(x)) = (

⋂
τ<σC(τ)) ∩ ⋃x∈S M∗(x) =

(
⋂
τ<σC(τ))∩L =

⋂
τ<σC(τ), as required, where we used the fact that P(L) is an infinite

∨-distributive lattice. Finally, it follows from property (i) and Theorem 4.1.9 that the family

of σ-connectivity openings associated with C coincides with {γσ,x | σ ∈ IR, x ∈ S}. Q.E.D.

The previous theorem shows that a multiscale connectivity system on a lattice L can

be equivalently specified by a family {γσ,x | σ ∈ IR, x ∈ S} ∈ X (L). Therefore, a multiscale

connectivity can be specified in three distinct equivalent ways, by means of a connectivity

measure, a connectivity pyramid, or a family of σ-connectivity openings. Clearly, an element

A ∈ L is σ-connected, for σ ∈ IR, if and only if γσ,x(A) = A, for all x ≤ A. Similar remarks

apply regarding full connectivity and full disconnectedness.

Property (i) of Theorem 6.1.13 states the fact that γσ,x is the connectivity opening at

scale σ. Property (ii) means that, for each x ∈ S, the family of openings {γσ,x | σ ∈ IR}
constitutes a granulometry on L, parameterized by scale. Furthermore, property (iii) says

that this granulometry satisfies a smoothness constraint, namely, that the connectivity

opening γσ,x is the greatest opening that is smaller than
∧
τ<σ γτ,x, for each σ ∈ IR (see

Corollary 2.2.7).
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Note that, in general, it is not true that γσ,x =
∧
τ<σ γτ,x, for σ ∈ IR and x ∈ S.

Clearly, that would happen if and only if
∧
τ<σ γτ,x were an opening on L, for σ ∈ IR

and x ∈ S. But it is a well-known fact that the infimum of openings is not necessar-

ily an opening. For a counterexample, let L = P(IR) with the points as sup-generators.

Let C: IR → P(L) be given by

C(σ) = ∅ ∪ S ∪ { (τ,∞] | τ ≥ σ}, σ ∈ IR. (6.16)

It is easy to check that C is a connectivity pyramid on P(IR). Note that, in this case,

γσ,x(IR) =

 (σ,∞], if σ < val(x)

x, otherwise
, σ ∈ IR, x ∈ S, (6.17)

where val(x) denotes the numerical value associated with point x. Pick a point x such that

val(x) ∈ IR, and let σ < val(x). From (6.17), we have that γσ,x(IR) = (σ,∞] �= [σ,∞] =⋂
τ<σ(τ,∞] =

⋂
τ<σ γτ,x(IR), so that γσ,x �= ∧τ<σ γτ,x (in particular,

∧
τ<σ γτ,x is not an

opening on L).

The following result provides a case where the equality γσ,x =
∧
τ<σ γτ,x, for a ∈ IR and

x ∈ S, does hold. Recall the concept of ↓-continuous operators, defined in Section 2.2.

6.1.14 Proposition. Let L be a lattice, and let {γσ,x | σ ∈ IR, x ∈ S} ∈ X (L) be a family

of ↓-continuous σ-connectivity openings on L. We have that γσ,x =
∧
τ<σ γτ,x, for σ ∈ IR

and x ∈ S. �

Proof. Given σ ∈ IR and x ∈ S, let ψ =
∧
τ<σ γτ,x. As argued before, it suffices to show

that ψ is an opening on L. It is clear that ψ is increasing and anti-extensive. We show

that ψ is idempotent. Given A ∈ L, we have that ψψ(A) =
∧
τ<σ γτ,x(

∧
τ ′<σ γτ ′,x(A)) =∧

τ<σ γτ,x(
∧
τ≤τ ′<σ γτ ′,x(A)), since {γτ ′,x(A) | τ ′ < σ} is a decreasing family. Since each

opening γτ,x is ↓-continuous, it follows from Proposition 2.2.10 that ψψ(A) =∧
τ<σ

∧
τ≤τ ′<σ γτ,xγτ ′,x(A) =

∧
τ<σ

∧
τ≤τ ′<σ γτ ′,x(A) =

∧
τ ′<σ γτ ′,x(A) = ψ(A), where we

used the fact that γτ,xγτ ′,x(A) = γτ ′,x(A), for all τ ≤ τ ′, which follows from the fact that

{γσ,x | σ ∈ IR} is a granulometry on L and Proposition 2.2.9. Q.E.D.

We remark that, if E is a finite set, the σ-connectivity openings associated with a multi-

scale connectivity on L = P(E) are trivially ↓-continuous, and therefore always satisfy the

smoothness property γσ,x =
∧
τ<σ γτ,x, for σ ∈ IR and x ∈ S. For example, the connectivity

openings associated with multiscale graph-theoretic connectivities (see Proposition 6.1.12)
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satisfy this property. In Section 6.3, we study examples of multiscale connectivity with

non-trivial ↓-continuous σ-connectivity openings.

Given a marker M ∈ L, the σ-reconstruction ρσ(A |M) of A ∈ L from M is defined by:

ρσ(A |M) =
∨
x≤M

γσ,x(A), σ ∈ IR. (6.18)

As in the single-scale case, it is easy to see that

γσ,x(A) =

 ρσ(A | x), if x ≤ A
O, otherwise

, σ ∈ IR, x ∈ S, (6.19)

for A ∈ L. It follows easily from the corresponding single-scale result that ρσ(A | M) =∨{C �σ A | C ∧M �= O}; i.e., ρσ(A | M) extracts the σ-connected components of A that

“intersect” marker M .

Being a supremum of openings, the operator ρσ(· | M) is an opening on L, for σ ∈ IR

and a fixed marker M ∈ L. Clearly, ρσ(A | M) is the reconstruction of A from M at

scale σ. In addition, it is clear that ρσ(· | M) ≤ ρτ (· | M), for σ ≥ τ ; i.e., for each fixed

marker M ∈ L, the family of openings {ρσ(· | M) | σ ∈ IR} constitutes a granulometry

on L, parameterized by scale. However, this granulometry does not satisfy a smoothness

constraint such as the one in property (iii) of Theorem 6.1.13; i.e., it is not true in general

that ρσ(· | M) =
(∧
τ<σ ρτ (· |M)

)◦, for each σ ∈ IR and M ∈ L. For a counterexample,

let L = P(IR), with the points as sup-generators, and let C be the connectivity pyramid

on P(IR) defined in (6.16). For a given σ ∈ IR, let M = [−∞, σ]. It is easy to check that

ρτ (IR |M) = IR, for all τ < σ; i.e., IR ∈ ⋂ τ<σ Inv(ρτ (· |M)). However, ρσ(IR |M) = M �=
IR, so that IR �∈ Inv(ρσ(· | M)). In other words, Inv(ρσ(· | M)) �= ⋂ τ<σ Inv(ρτ (· | M)). It

easily follows that ρσ(· |M) �= (∧τ<σ ρτ (· |M)
)◦.

6.2 Discrete Multiscale Connectivity

In the case of digital images, the set of scales available for multiscale analysis is usually

discrete. In this section, we show that it is possible to specialize all multiscale connectivity

notions discussed in the previous section to the discrete case. Furthermore, the analysis

becomes simpler since, in this case, the semi-continuity axiom (iii) of Definition 6.1.7 asso-

ciated with the levels of a connectivity pyramid is obsolete. We remark here that only the
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set of scales is required to be discrete, whereas the underlying lattice may be arbitrary. In

practice, however, both the set of scales and the underlying lattice are discrete.

Rather than simply converting all the concepts and results discussed in the last section

to the discrete setting, we focus our attention here on discretizing the main ideas related to

multiscale connectivity. We begin with the definition of a discrete connectivity measure.

6.2.1 Definition. Let L be a lattice and ϕ be a connectivity measure on L. If ϕ takes

only integer values (i.e., if ϕ(L) ⊆ ZZ), then ϕ is said to be a discrete connectivity measure

on L. "

Discrete connectivity measures are of course special cases of connectivity measures. In

particular, notions defined in the last section regarding connectivity measures, such as full

connectivity, full disconnectedness, σ-connectivity, σ-sections, and strong and translation-

invariant connectivity measures, apply to the discrete case as well. As a matter of fact, some

of the examples of connectivity measure discussed in the last section are in fact discrete;

e.g., the simple binary connectivity measure associated with single-scale connectivity classes

and the strong translation-invariant connectivity measure of Example 6.1.2.

The following is the discrete analog of Proposition 6.1.3.

6.2.2 Proposition. If ϕ is a discrete connectivity measure on a lattice L, and f : ZZ → ZZ

is a nondecreasing function such that f(∞) = ∞, then the composition f(ϕ(·)) is a discrete

connectivity measure on L. �

The previous result has the same useful consequences as its continuous counterpart. For

example, if ϕ is a given discrete connectivity measure on L and a, b ∈ ZZ, with a > 0, then

aϕ+ b is also a connectivity measure on L.

Next, we give the discrete version of Proposition 6.1.5.

6.2.3 Proposition. Let {ϕα} be an arbitrary family of discrete connectivity measures

on a lattice L. The pointwise infimum (
∧
ϕα)(A) =

∧
ϕα(A), for A ∈ L, is a discrete

connectivity measure on L. �

We remark that, as in the continuous case, the pointwise supremum of discrete connec-

tivity measures is not in general a discrete connectivity measure (as a matter of fact, the

connectivity measures used in the counterexample given after Proposition 6.1.5 are actually

discrete connectivity measures).
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For a fixed sup-generating family, let Md(L) be the set of all discrete connectivity

measures defined on a lattice L. The following is the discrete analog of Proposition 6.1.6.

6.2.4 Proposition.Given a lattice L, Md(L) is a lattice, under the product partial order.�

We have the following further characterization of Md(L).

6.2.5 Proposition. Given a lattice L, Md(L) is a sublattice of M(L), under the product

partial order. �

Proof. Clearly, Md(L) is a non-empty subset of M(L). In addition, it follows from

Proposition 6.2.3 that, under the product partial order, the infimum in Md(L) is given by

the pointwise infimum in M(L). It remains to show that, under the product partial order,

the supremum in Md(L) coincides with the supremum in M(L). Let {ϕα} be a family

of discrete connectivity measures in Md(L), and ϕ =
∧{ϕ ∈ M(L) | ϕ ≥ ∨ϕα} be the

supremum of {ϕα} in M(L). We need to show that ϕ ∈ Md(L). Suppose that it is not;

then, there is an A0 ∈ L such that ϕ(A0) �∈ ZZ. Define a connectivity measure ϕ′ ∈ M(L)

by setting ϕ′(A) = ϕ(A), for A �= A0, and ϕ′(A0) = ?ϕ(A0)@, where ?a@ is the greatest

integer less than or equal to a. It is clear that ϕ′ ≥ ∨ϕα, with ϕ′ < ϕ, a contradiction,

since ϕ was assumed to be the supremum of {ϕα} in M(L). Therefore, ϕ ∈ Md(L), as

required. Q.E.D.

We now define the discrete analog of a connectivity pyramid.

6.2.6 Definition. Let L be a lattice with sup-generating family S. A discrete connectivity

pyramid on L is a mapping C: ZZ → P(L) such that:

(i) C(σ) is a connectivity class in L, for each σ ∈ ZZ,

(ii) C(σ) ⊆ C(τ), if σ ≥ τ . "

As in the continuous case, the σ-connectivity class C(σ) corresponds to connectiv-

ity at scale σ. But the set of scales is now discrete, which makes obsolete axiom (iii)

of Definition 6.1.7. Notions defined in the last section regarding connectivity pyramids,

such as full connectivity, full disconnectedness, σ-connectivity, σ-levels, and strong and

translation-invariant connectivity pyramids, apply to the discrete case as well, with the

obvious modifications.
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The set of all discrete connectivity pyramids on a lattice L is denoted by Yd(L). We

mention that a similar result to Proposition 6.1.8 can be obtained regarding Yd(L). However,

we limit ourselves here to the following proposition.

6.2.7 Proposition. Given a lattice L, the set Yd(L) is a lattice, under the product inclu-

sion order, with infimum (
∧
Cα)(σ) =

⋂
Cα(σ), for σ ∈ ZZ, and supremum (

∨
Cα)(σ) =

φ(
⋃
Cα(σ)), for σ ∈ ZZ, where φ is the closing on P(L) given by (4.7). �

The following proposition provides a relationship between Yd(L) and the lattice Y(L)

of continuous connectivity pyramids.

6.2.8 Proposition. Given a lattice L, the lattice Yd(L) is isomorphic to a sublattice

of Y(L), under the product inclusion order. Moreover, the isomorphism Λ : Yd(L) → Y(L)

is given by

Λ(C)(σ) = C(AσB), σ ∈ IR, (6.20)

where AaB is the smallest integer greater than or equal to a. �

Proof. Note that Λ(C), for C ∈ Yd(L), is a connectivity pyramid on L, since axioms (i) and

(ii) of Definition 6.1.7 are clearly satisfied, while axiom (iii) follows easily from the right-

continuity of the “ceiling” function f(a) = AaB, for a ∈ IR. Therefore, Λ defines a mapping

from Yd(L) into Y(L). This mapping is clearly injective, and it therefore establishes a

bijection between Yd(L) and the range Λ(Yd(L)), with inverse Λ−1 from Λ(Yd(L)) into

Yd(L) defined accordingly. It is clear that Λ is order preserving; i.e., C ≤ C′ ⇔ Λ(C) ≤
Λ(C′), for C,C′ ∈ Yd(L), where the partial order in Λ(Yd(L)) is the product inclusion

order. Therefore, Λ(Yd(L)) is a complete lattice under the product inclusion order, which

is isomorphic to Yd(L) via Λ. It remains to show that Λ(Yd(L)) is a sublattice of Y(L).

Clearly, Yd(L) is a partially ordered subset of Y(L), under the product inclusion order.

Let {Cα} be a family of connectivity pyramids in Λ(Yd(L)), and {C′
α = Λ−1(Cα)} be the

corresponding family in Yd(L). The infimum of {Cα} in Λ(Yd(L)) is given by Λ(
∧
C′
α),

where
∧
C′
α is given by a pointwise intersection in Yd(L) (see Proposition 6.2.7). It can

be easily checked that this coincides with the infimum of {Cα} in Y(L). Similarly, the

supremum of {Cα} in Λ(Yd(L)) is given by Λ(
∨
C′
α), where (

∨
C′
α)(σ) = φ(

∨
Cα(σ)),

for σ ∈ ZZ (see Proposition 6.2.7). It can be easily checked that this coincides with the

supremum of {Cα} in Y(L). Hence, Λ(Yd(L)) is a sublattice of Yd(L), as required. Q.E.D.
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Being isomorphic to a sublattice of Y(L), lattice Yd(L) is embedded in Y(L), via Λ.

Note also that Λ(Yd(L)) comprises those connectivity pyramids that are discrete in nature;

i.e., their σ-level connectivity classes change only at the integers. In this sense, discrete

connectivity pyramids can be thought of as special cases of connectivity pyramids.

As in the continuous case, discrete connectivity pyramids are closely related to discrete

connectivity measures. This is shown by the next result, which is the discrete analog of

Theorem 6.1.9.

6.2.9 Theorem. Let L be a lattice with sup-generating family S. The lattice Md(L) of

discrete connectivity measures on L is isomorphic to the lattice Yd(L) of discrete connec-

tivity pyramids on L. Moreover, the isomorphism Γd : Md(L) → Yd(L) is given by

Γd(ϕ)(σ) = {A ∈ L | ϕ(A) ≥ σ}, σ ∈ ZZ, (6.21)

with inverse Γ−1
d : Yd(L) → Md(L), given by

Γ−1
d (C)(A) =

∨
{σ ∈ ZZ | A ∈ C(σ)}, A ∈ L. (6.22)

�

The isomorphism between lattices Md(L) and Yd(L) is of course a bijection; i.e., to each

discrete connectivity measure ϕ on L, there is an associated equivalent discrete connectivity

pyramid C on L, which consists of the σ-sections of ϕ. Conversely, ϕ can be regenerated

by “stacking up” the σ-levels of C. Therefore, it is convenient to say that L is furnished

with a discrete multiscale connectivity system (ϕ,C) ∈ Md(L) × Yd(L), such that ϕ and

C are equivalent under the bijection given in Theorem 6.2.9. As in the continuous case,

we have that ϕ(A) ≥ σ ⇔ A ∈ C(σ), in which case A is σ-connected, for σ ∈ ZZ. In

addition, ϕ(A) = ∞ ⇔ A ∈ ⋂σ∈ZZ C(σ), in which case A is fully connected. Similarly,

ϕ(A) = −∞ ⇔ A �∈ ⋃σ∈ZZ C(σ), in which case A is fully disconnected. Similarly to

the continuous case, one can also define strong and translation-invariant discrete multiscale

connectivity systems.

Next, we give two important examples of discrete multiscale connectivity.

6.2.10 Example.

(a) Let L = P(E) with the points as sup-generators, and P = {Gτ | τ ∈ ZZ} be a

decreasing family of topologies on E. The family P is a discrete topology pyramid,
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with τ -level topologies Gτ , for τ ∈ ZZ. The mapping C: ZZ → P(P(E)), given by

C(τ) = {A ⊆ E | A is connected in (E,G−τ )}, τ ∈ ZZ, (6.23)

is a discrete connectivity pyramid on P(E). This is the discrete analog of multiscale

topological connectivity (see Proposition 6.1.11).

(b) Let L = P(V ) with the points as sup-generators, where V is a finite set. Let {Gτ =

(V,Lτ ) | τ ∈ ZZ} be a family of graphs defined on V , where Lτ1 ⊆ Lτ2 , for τ1 ≥ τ2.

The mapping C: ZZ → P(P(E)), given by

C(τ) = {U ⊆ V | U is connected in Gτ = (V,Lτ )}, τ ∈ ZZ, (6.24)

is a discrete connectivity pyramid on P(E). This is the discrete analog of multiscale

graph-theoretic connectivity (see Proposition 6.1.12). ♦

We conclude this section with a discussion of the discrete analogs of σ-connectivity

openings and σ-reconstruction operators. The analysis is substantially simplified in this

case, due to the discrete nature of the scale parameter.

Given a discrete multiscale connectivity system (ϕ,C) on L, the (discrete) σ-connectivity

openings associated with (ϕ,C) are defined exactly as in the continuous case; i.e.,

γσ,x(A) =
∨

{C ∈ C(σ) | x ≤ C ≤ A}, σ ∈ ZZ, x ∈ S, (6.25)

for A ∈ L. We also have that

C(σ) =
⋃
x∈S

Inv(γσ,x) =
⋃
x∈S

{γσ,x(A) | A ∈ L}, σ ∈ ZZ. (6.26)

The following result is the discrete analog of Theorem 6.1.13.

6.2.11 Theorem. Let L be a lattice with sup-generating family S. For a given C ∈ Yd(L),

let {γσ,x | σ ∈ ZZ, x ∈ S} be the σ-connectivity openings associated with C, given by (6.25).

Then,

(i) {γσ,x | x ∈ S} is a family of connectivity openings on L, for each σ ∈ ZZ.

(ii) γσ,x ≤ γτ,x, if σ ≥ τ , for each x ∈ S.
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Conversely, let Xd(L) denote the set of all families of openings {γσ,x | σ ∈ ZZ, x ∈ S} that

satisfy properties (i) and (ii) above. For {γσ,x | σ ∈ ZZ, x ∈ S} ∈ Xd(L), let C be given by

(6.26). Then, C is a discrete connectivity pyramid on L; i.e., C ∈ Yd(L). Moreover, its

family of σ-connectivity openings coincides with {γσ,x | σ ∈ ZZ, x ∈ S}. Hence, (6.25) and

(6.26) establish a bijection between Yd(L) and Xd(L). �

The previous theorem says that a discrete multiscale connectivity on a lattice L cor-

responds, in a unique fashion, to a family {γσ,x | σ ∈ ZZ, x ∈ S} ∈ Xd(L). Properties

(i) and (ii) mean that γσ,x is the connectivity opening at scale σ, for each x ∈ S, and

{γσ,x | σ ∈ ZZ} constitutes a granulometry on L parameterized by the scale parameter σ,

respectively.

The concept of a (discrete) σ-connected component is defined exactly as in the con-

tinuous case. If C is a σ-connected component of A, we write C �σ A, as before. All

remarks made in the last section regarding σ-connected components apply to the discrete

case as well.

Given a marker M ∈ L, the (discrete) σ-reconstruction ρσ(A | M) of A ∈ L from M is

defined by:

ρσ(A |M) =
∨
x≤M

γσ,x(A), σ ∈ ZZ. (6.27)

As in the continuous case, it is easy to see that

γσ,x(A) =

 ρσ(A | x), if x ≤ A
O, otherwise

, σ ∈ ZZ, x ∈ S, (6.28)

for A ∈ L.

The discrete nature of the scale parameter allows one to establish the following result,

which can be thought of as the discrete multiscale version of Theorem 4.1.17.

6.2.12 Theorem. Let L be an infinite ∨-distributive lattice with sup-generating family S.

For a family of σ-connectivity openings {γσ,x | σ ∈ ZZ, x ∈ S} ∈ Xd(L), let {ρσ | σ ∈ ZZ} be

its family of σ-reconstruction operators, given by (6.27). Then,

(i) ρσ : L × L → L is a reconstruction operator that satisfies properties (i)–(v) of Theo-

rem 4.1.17, for each σ ∈ ZZ.

(ii) ρσ(· |M) ≤ ρτ (· |M), if σ ≥ τ , for each M ∈ L.
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Conversely, let Wd(L) denote the set of all families of operators {ρσ | σ ∈ ZZ} that satisfy

properties (i) and (ii) above. For {ρσ | σ ∈ ZZ} ∈ Wd(L), we have that {γσ,x | σ ∈
ZZ, x ∈ S}, defined by (6.28), belongs to Xd(L). Moreover, its family of σ-reconstruction

operators coincides with {ρσ | σ ∈ ZZ}. Hence, (6.27) and (6.28) establish a bijection

between Xd(L) and Wd(L). �

Properties (i) and (ii) mean that ρσ is the reconstruction operator at scale σ and that,

for each M ∈ L, {ρσ(· | M) | σ ∈ ZZ} constitutes a granulometry on L parameterized

by the scale parameter σ. Together with Theorem 6.2.11, the previous result says that

a discrete multiscale connectivity on an infinite ∨-distributive lattice L corresponds, in a

unique fashion, to a family {ρσ | σ ∈ ZZ} ∈ Wd(L).

A discrete multiscale connectivity on an infinite ∨-distributive lattice can therefore be

specified in four distinct equivalent ways: by means of a discrete connectivity measure, a

discrete connectivity pyramid, a family of discrete σ-connectivity openings, or a family of

discrete σ-reconstruction operators.

6.3 Multiscale Connectivities Based on Multiscale Morpho-

logical Operators

In Mathematical Morphology, there are several examples of operations that have a natu-

ral multiscale interpretation, such as dilations by a scalable structuring element and granu-

lometries [34, 76, 77]. In this section, we define and study examples of multiscale connectiv-

ities generated by such operations. We consider two general classes of multiscale operators,

namely, clustering pyramids, which lead to “negative” multiscale connectivities, and con-

traction pyramids, which lead to “positive” multiscale connectivities, in a sense that will

become clear in the sequel.

6.3.1 Multiscale Connectivities Generated by Clustering Pyramids

In this subsection, we formalize the notion of clustering pyramids, and we show how

they can be used to construct multiscale connectivities. We will see that these multiscale

connectivities are “negative” in nature.

We start with the following definition.
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6.3.1 Definition. Let J be a poset. A family {ψα | α ∈ J} of operators on a lattice L is

said to have the interpolation property if:

for α, β ∈ J , with α ≥ β, there exists a γ ∈ J such that ψα = ψγψβ. (6.29)

"

In other words, there is always an operator in the family that provides the necessary

composition to go “up” from one operator in the family to another. In [75], families of

operators with the interpolation property are referred to as pyramids of operators. However,

we prefer to reserve this term here for a different, more restricted concept, which will be

discussed below.

Next, we give classical examples of families of morphological operators that have the

interpolation property. In what follows, IR+ and ZZ+ denote the set of nonnegative real and

nonnegative integer numbers, respectively.

6.3.2 Example.

(a) (Dilation by a scalable structuring element). Let L = P(IRn) and J = IR+. We define

the scaled replicas of a structuring element B ⊆ IRn by

σB = {v ∈ IRn | v = σw, w ∈ B}, (6.30)

for σ ∈ IR+. Consider now the family {δσ(A) = A⊕σB | σ ∈ IR+} of dilations, where

B is a convex structuring element. From [34, Prop. 9.2], it follows that, if σ ≥ τ , then

δσ(A) = A⊕ σB = (A⊕ τB) ⊕ (σ − τ)B = δσ−τδτ (A), so that (6.29) is satisfied, and

{δσ(A) = A⊕ σB | σ ∈ IR+} has the interpolation property.

(b) (Discrete dilation by a scalable structuring element). This is the discrete analog of the

previous example. Here, L = P(ZZn) and J = ZZ+. We define the scaled replicas of a

structuring element B ⊆ ZZn by

σB =


B ⊕B ⊕ · · · ⊕B︸ ︷︷ ︸
σ − 1 times

, for σ ∈ ZZ+, σ �= 0

0, for σ = 0

, (6.31)

where 0 is the origin of ZZn. Consider the family {δσ(A) = A ⊕ σB | σ ∈ ZZ+}
of discrete dilations, where B is any structuring element. From [34, Prop. 4.10], it

follows that, if σ ≥ τ , then δσ(A) = A ⊕ σB = (A ⊕ τB) ⊕ (σ − τ)B = δσ−τδτ (A),
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so that (6.29) is satisfied, and {δσ(A) = A ⊕ σB | σ ∈ ZZ+} has the interpolation

property.

(c) (Granulometry). Let L be an arbitrary lattice and J be an arbitrary poset. Consider

a granulometry {θσ | σ ∈ J} (see Section 2.2). From Proposition 2.2.9, it follows

that, if σ ≥ τ , then θσ = θσθτ , so that (6.29) is satisfied, and {θσ | σ ∈ J} has the

interpolation property.

(d) (Anti-granulometry). This is the dual of the previous example. Let L be an arbitrary

lattice and J be an arbitrary poset. Consider an anti-granulometry {φσ | σ ∈ J};

i.e., a family {φσ | σ ∈ J} of closings on L such that φσ ≥ φτ , for σ ≥ τ . By a dual

statement to the one of Proposition 2.2.9, it follows that, if σ ≥ τ , then φσ = φσφτ ,

so that (6.29) is satisfied, and {φσ | σ ∈ J} has the interpolation property. ♦

We remark here that Examples 6.3.2(a), (b) can also be defined on a proper subset E of

IRn or ZZn, respectively (this is convenient at times, both from a theoretical and a practical

point of view). In this case, the dilations are given by δσ(A) = A⊕E σB = (A⊕ σB) ∩ E,

for σ ∈ IR+ or σ ∈ ZZ+, respectively (see (2.22) and (2.23)).

Now, recall from Section 4.3.1 that clusterings are operators that generate new connec-

tivities by grouping connected components into “clusters.” The following definition extends

the notion of clustering to a multiscale framework.

6.3.3 Definition. Let L be a lattice, furnished with a connectivity class C. A family

{ψσ | σ ∈ IR+} of operators on L is said to be a clustering pyramid on L if:

(i) ψσ is a clustering on L, for each σ ∈ IR+,

(ii) {ψσ | σ ∈ IR+} has the interpolation property,

(iii) ψτ (A) ∈ C, for all τ > σ ⇒ ψσ(A) ∈ C, for σ ∈ IR+, A ∈ L.

A clustering pyramid is said to be strong if each clustering in the pyramid is strong. "

Given a clustering pyramid {ψσ | σ ∈ IR+} on L, we say that A ∈ L is a σ-cluster if

ψσ(A) ∈ C, for σ ∈ IR+. Properties (i) and (ii) of Definition 6.3.3 are self-evident, whereas

property (iii) says that if A is a τ -cluster for each τ > σ, then A must be a σ-cluster, for

σ ∈ IR+. This provides a smoothness constraint on the clustering pyramid.
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Clustering pyramids lead to multiscale connectivities. This is shown by the following

proposition.

6.3.4 Proposition. Let L be a lattice, furnished with a connectivity class C. If {ψσ | σ ∈
IR+} is a clustering pyramid on L, then C: IR → P(L), given by

C(σ) =

 C, if σ > 0

(ψ−σ)−1(C) = {A ∈ L | ψ−σ(A) ∈ C}, if σ ≤ 0
, σ ∈ IR, (6.32)

is a connectivity pyramid on L, with associated connectivity measure ϕ: L → IR given by

ϕ(A) =

 ∞, if A ∈ C
−∧{σ ∈ IR+ | ψσ(A) ∈ C}, if A �∈ C

, A ∈ L. (6.33)

�

Proof. From Proposition 4.3.5(a), it follows that C(σ) is a connectivity class in L, for

each σ ∈ IR, which shows axiom (i) of a connectivity pyramid. To show axiom (ii), we

need to prove that A ∈ C(σ) ⇒ A ∈ C(τ), if σ ≥ τ . If σ, τ > 0, there is nothing to show.

If σ > 0 and τ ≤ 0, then A ∈ C(σ) = C, so that ψ−τ (A) ∈ C ⇒ A ∈ C(τ), since ψ−τ is

connectivity-preserving. If σ, τ ≤ 0, we have that A ∈ C(σ) = (ψ−σ)−1(C) ⇒ ψ−σ(A) ∈ C.

From the interpolation property of the clustering pyramid, there exists a τ ′ ∈ IR+ such that

ψ−τ (A) = ψτ ′ψ−σ(A). But since ψτ ′ is connectivity-preserving, it follows that ψ−τ (A) ∈
C ⇒ A ∈ C(τ). To show axiom (iii), we need to prove that A ∈ C(σ) ⇔ A ∈ C(τ), for all

τ < σ. The direct implication follows from axiom (ii). To show the converse implication,

note that if σ > 0, there is nothing to show, whereas if σ ≤ 0, the desired result follows

easily from property (iii) of Definition 6.3.3.

Finally, we verify (6.33). From (6.11), we have that ϕ(A) =
∨{σ ∈ IR | A ∈ C(σ)}, for

A ∈ L. If A ∈ C, then A ∈ C(σ), for all σ ∈ IR, so that ϕ(A) =
∨

IR = ∞. If A �∈ C (i.e.,

if A �∈ C(σ), for σ > 0), then ϕ(A) =
∨{σ ∈ IR− | A ∈ C(σ)} =

∨{σ ∈ IR− | ψ−σ(A) ∈
C} = −∧{σ ∈ IR+ | ψσ(A) ∈ C}, as required, where IR− denotes the set of nonpositive real

numbers. Q.E.D.

The multiscale connectivity defined above is referred to as a clustering-pyramid multi-

scale connectivity. In this framework, if A ∈ C, then A is fully connected, whereas if A �∈ C,

then its degree of connectivity is negative (nonpositive), in which case A is −σ-connected

if ψ−σ(A) ∈ C, for σ ∈ IR+. Hence, connectivity at negative scales corresponds to how
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disconnected A is with respect to the base connectivity C; the more negative the degree

of connectivity of A is, the “larger” the clustering applied on A needs to be in order

to “reconnect” A. Note that ψσ(A) may be thought of as A seen at scale −σ, so that

−σ-connectivity of A corresponds to connectivity, according to C, of A at scale −σ, for

σ ∈ IR+. Note also that A is fully disconnected if ψ−σ(A) �∈ C, for all σ ∈ IR+; i.e., no

clustering in the pyramid is enough to reconnect A.

As a straightforward consequence of Proposition 4.3.6, it is possible to characterize the

σ-connectivity openings and the σ-reconstruction operators associated with a multiscale

connectivity generated by a strong clustering pyramid. We have the following proposition.

6.3.5 Proposition. Let L be a lattice with a sup-generating family S, furnished with a

connectivity class C. Let (ϕ,C) be the multiscale connectivity system generated by a strong

clustering pyramid {ψσ | σ ∈ IR+} on L, given by (6.32) and (6.33). Let {γx | x ∈ S} and

ρ be the connectivity openings and the reconstruction operator, respectively, associated

with C. Then:

(a) The σ-connectivity openings associated with (ϕ,C) are given by

γσ,x(A) =

 A ∧ γxψ−σ(A), if x ≤ A
O, if x �≤ A

, σ ≤ 0, (6.34)

and

γσ,x(A) = γx(A), σ > 0, (6.35)

for A ∈ L, x ∈ S.

(b) If L is infinite ∨-distributive, the σ-reconstruction operators associated with (ϕ,C)

are given by

ρσ(A |M) =

 ρ(A|M), for σ > 0

A ∧ ρ(ψ−σ(A) | A ∧M), for σ ≤ 0
, (6.36)

for A,M ∈ L. �

The following corollary is an immediate consequence of part (a) of the previous propo-

sition.



6.3 Multiscale Connectivities Based on Multiscale Morphological Operators 185

6.3.6 Corollary. Let L be a lattice with a sup-generating family S, furnished with a

connectivity class C, with ↓-continuous connectivity openings. Let (ϕ,C) be the multiscale

connectivity system generated by a strong clustering pyramid {ψσ | σ ∈ IR+} on L, given

by (6.32) and (6.33). If, for each σ ∈ IR+, the clustering ψσ is ↓-continuous, then the

σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S} associated with (ϕ,C) are ↓-continuous. �

Before we provide examples, we need a few auxiliary results. In particular, we are

interested in studying properties of the lattice F(E) of closed sets of a topological space E.

6.3.7 Lemma. Let E be a topological space and J be a poset. Suppose that {ψ̂α | α ∈ J}
is a family of operators on P(E) such that the restriction of ψ̂α to F(E) defines an operator

ψα on F(E), for α ∈ J (i.e., A ∈ F(E) ⇒ ψ̂α(A) ∈ F(E), for α ∈ J).

(a) If the family {ψ̂α | α ∈ J} has the interpolation property, so does the family {ψα |
α ∈ J}.

(b) Suppose that E is a Hausdorff space and Ĉ is a compatible connectivity class in P(E),

with the points as sup-generators. If {ψ̂α | α ∈ J} is a family of strong clusterings on

P(E), according to Ĉ, then {ψα | α ∈ J} is a family of strong clusterings on F(E),

according to the connectivity class C = Ĉ ∩ F(E). �

Proof. (a): For α, β ∈ J , with α ≥ β, there exists a γ ∈ J such that, for all A ∈ F(E),

ψα(A) = ψ̂α(A) = ψ̂γψ̂β(A) = ψγψβ(A); i.e., ψα = ψγψβ, as required.

(b): Let α ∈ J . We show that ψα satisfies the conditions of Definition 4.3.2. Clearly, ψα

is increasing and anti-extensive on F(E), and ψα(O) = ψ̂α(O) = O. Now, from Proposi-

tion 4.1.11, it follows that the connectivity openings {γx | x ∈ S} associated with C are the

restriction to F(E) of the connectivity openings {γ̂x | x ∈ S} associated with Ĉ. Therefore,

for all A ∈ F(E) and x ∈ S, ψα(A ∩ γxψα(A)) = ψ̂α(A ∩ γ̂xψ̂α(A)) = γ̂xψ̂α(A) = γxψα(A);

i.e., ψα(A ∧ γxψα) = γxψα, as required. Q.E.D.

The previous result gives sufficient conditions so that {ψα | α ∈ J} is a family of

clusterings on F(E) that has the interpolation property. Such families satisfy properties

(i) and (ii) of a clustering pyramid. The following result gives a sufficient condition that

guarantees that property (iii) is also satisfied.

6.3.8 Lemma. Let L be a lattice with a sup-generating family S, furnished with a connec-

tivity class C, with ↓-continuous connectivity openings {γx | x ∈ S}. A family {ψσ | σ ∈ IR+}
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of clusterings on L that has the interpolation property, and such that

ψσ =
∧
τ>σ

ψτ , σ ∈ IR+, (6.37)

is a clustering pyramid on L. �

Proof. We need to show property (iii) of Definition 6.3.3. Given σ ∈ IR+ and A ∈ L,

suppose that ψτ (A) ∈ C, for all τ > σ. If ψσ(A) = O, then ψσ(A) ∈ C and we are

done. Otherwise, pick a sup-generator x ≤ A. Clearly, {ψτ (A) | τ > σ} is a decreasing

family in L. Since γx is ↓-continuous, we can apply Proposition 2.2.10 to get γxψσ(A) =

γx(
∧
τ>σ ψτ (A)) =

∧
τ>σ γxψτ (A) =

∧
τ>σ ψτ (A) = ψσ(A). Therefore, ψσ(A) ∈ C, as

required. Q.E.D.

The two previous lemmas are useful for establishing the next result, which gives an

important example of a clustering pyramid.

6.3.9 Proposition. Let E be a connected, bounded and closed subset of IRn, with the

Euclidean topology. Let L = F(E), with the points as sup-generators, furnished with the

connectivity class C of topologically connected closed sets in E, and let B ⊆ IRn be a

compact structuring element.

(a) The restriction of the dilation δ̂σ(A) = A⊕E σB on P(E) to F(E) defines an operator

δσ on F(E); i.e.,

A ∈ F(E) ⇒ A⊕E σB ∈ F(E), σ ∈ IR+. (6.38)

(b) We have that δσ =
∧
τ>σ δτ , for σ ∈ IR+; i.e., for A ∈ F(E),

A⊕E σB =
⋂
τ>σ

(A⊕E τB), σ ∈ IR+. (6.39)

(c) If B is convex, B contains the origin of IRn, and (σB)v ∩ E is connected, for all

v ∈ E and σ ∈ IR+, then the family {δσ(A) | σ ∈ IR+} is a strong clustering pyramid

on F(E). �

Proof. (a): Compactness of B in IRn implies that σB is also compact in IRn, for σ ∈ IR+.

Since A is closed in IRn, it follows from [34, Lemma 7.42] that A⊕ σB is closed in IRn, so

that A⊕E σB = (A⊕ σB) ∩ E ∈ F(E), for σ ∈ IR+.
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(b): The inequality A ⊕E σB ⊆ ⋂τ>σ A ⊕E τB, for σ ∈ IR+, is obvious. We show the

reverse inequality. Let σ ∈ IR+, and suppose that v �∈ A ⊕ σB; i.e., v ∈ (A ⊕ σB)c. Note

that this is equivalent to the fact that there is no r ∈ A and s ∈ B such that v = r + σs.

Since (A ⊕ σB)c is an open set, we can find an open Euclidean ball B(v, ε), centered at

v and with radius ε > 0, such that B(v, ε) ⊆ (A ⊕ σB)c. Clearly, this implies that there

is no r ∈ A and s ∈ B such that v = r + (σ + ε/2)s; i.e., v �∈ A ⊕ (σ + ε/2)B, so that

v �∈ ⋂τ>σ(A ⊕ τB). Hence, A ⊕ σB ⊇ ⋂τ>σ A ⊕ τB ⇒ A ⊕E σB = (A ⊕ σB) ∩ E ⊇
(
⋂
τ>σ A⊕ τB) ∩ E =

⋂
τ>σ((A⊕ τB) ∩ E) =

⋂
τ>σ A⊕E τB, as required.

(c): Convexity of B implies that {δ̂σ | σ ∈ IR+} has the interpolation property (see

Example 6.3.2(a)). It follows from Lemma 6.3.7(a) that {δσ | σ ∈ IR+} has the interpolation

property as well. In addition, since B contains the origin of IRn, the dilation δ̂σ is extensive,

for each σ ∈ IR+. Moreover, we have that δ̂σ({v}) = {v} ⊕E σB = (σB)v ∩E is connected,

for all v ∈ E and σ ∈ IR+. Since P(E) is an infinite ∨-distributive lattice, we can apply

Proposition 4.3.9 to conclude that {δ̂σ | σ ∈ IR+} is a family of strong clusterings on P(E),

according to the connectivity class Ĉ of the topologically connected sets in E. Note that

C = Ĉ ∩ F(E). It then follows from Lemma 6.3.7(b) that {δσ(A) | σ ∈ IR+} is a family of

strong clusterings on F(E), according to C. Finally, note that E is a connected compact

Hausdorff space. It follows from Proposition 4.1.13 that the connectivity openings associated

with C are ↓-continuous. In addition, from part (b), we have that δσ =
∧
τ>σ δτ , for σ ∈ IR+.

Therefore, we can apply Lemma 6.3.8 to conclude that {δσ(A) | σ ∈ IR+} is a clustering

pyramid on F(E). Q.E.D.

The following result follows easily from Proposition 7.39 and Corollary 7.44, in [34].

6.3.10 Proposition. Let E be a bounded and closed subset of IRn with the Euclidean

topology. For B ∈ F(E), the operator δσ(A) = A ⊕E σB on F(E) is ↓-continuous, for

σ ∈ IR+. �

Propositions 6.3.4–6.3.10 and Corollary 6.3.6 lead to the following example.

6.3.11 Example. Let E be a connected, bounded and closed subset of IRn, with the Eu-

clidean topology. Let L = F(E), with the points as sup-generators, furnished with the

connectivity class C of topologically connected closed sets in E, and let B ⊆ IRn be a com-

pact structuring element, such that B is convex, B contains the origin of IRn, and (σB)v∩E
is connected, for all v ∈ E and σ ∈ IR+. The family {δσ(A) = A ⊕E σB | σ ∈ IR+} is a
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A BE⊕ σ

A BE⊕ τ

A

E

σB

τB

Figure 6.2: An illustration of dilation-pyramid multiscale connectivity. The original set A
is disconnected; hence, its degree of connectivity ϕ(A) is negative. Note that A ⊕E τB
is connected, but A ⊕E σB is not; hence, A is −τ -connected, but it is not −σ-connected.
Equivalently, −τ ≤ ϕ(A) < −σ.

strong clustering pyramid on F(E), with associated dilation-pyramid multiscale connectiv-

ity system (ϕ,C), given by (6.32) and (6.33), with ψσ = δσ, for σ ∈ IR+. Furthermore,

the σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S} associated with (ϕ,C) are ↓-continuous

(we remark that, despite the term “dilation-pyramid,” the operators {δσ | σ ∈ IR+} are

pseudo-dilations on F(E), since there are instances in which they fail to commute with the

supremum in F(E)). ♦

Note that, in this framework, we have that ϕ(A) = ∞, if A ∈ C; otherwise, ϕ(A) =

−∧{σ ∈ IR+ | A ⊕E σB ∈ C}; i.e., the negative of the “infimum size” of dilation by B

necessary to obtain a connected set. Fig. 6.2 provides an illustration of this example, where

E is a square subset of IR2, furnished with the Euclidean topology, and B ∈ F(E) is a

Euclidean disk. Note that the original set A is disconnected, so that it has a negative

degree of connectivity. Dilating A by increasingly larger scaled replicas of the structuring

element B eventually produces a connected set. The (negative) degree of connectivity of A

measures how disconnected A is, with respect to the base connectivity C.
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We mention here that multiscale connectivities can also be generated by certain anti-

granulometries of connectivity-preserving closings; this is a consequence of Example 6.3.2(d)

and Lemma 6.3.8. We have the following example.

6.3.12 Example. Let L be an arbitrary lattice, furnished with a connectivity class C, with

↓-continuous connectivity openings {γx | x ∈ S}. An anti-granulometry {φσ | σ ∈ IR+} of

connectivity-preserving closings on L, such that φσ =
∧
τ>σ φτ , for each σ ∈ IR+, is a

clustering pyramid on L. The associated closing-pyramid multiscale connectivity system

(ϕ,C) is given by (6.32) and (6.33), with ψσ = φσ, for σ ∈ IR+. ♦

The discretization of the theory of clustering-pyramid multiscale connectivity presented

above is straightforward. The following is the discrete analog of Definition 6.3.3.

6.3.13 Definition. Let L be a lattice, furnished with a connectivity class C. A family

{ψσ | σ ∈ ZZ+} of clusterings on L that has the interpolation property is said to be a

discrete clustering pyramid on L. A discrete clustering pyramid is said to be strong if each

clustering in the pyramid is strong. "

The following is the discrete analog of Proposition 6.3.4.

6.3.14 Proposition. Let L be a lattice, furnished with a connectivity class C.

If {ψσ | σ ∈ ZZ+} is a discrete clustering pyramid on L, then C: ZZ → P(L), given by

C(σ) =

 C, if σ > 0

(ψ−σ)−1(C) = {A ∈ L | ψ−σ(A) ∈ C}, if σ ≤ 0
, σ ∈ ZZ, (6.40)

is a discrete connectivity pyramid on L, with associated discrete connectivity measure ϕ:

L → ZZ given by

ϕ(A) =

 ∞, if A ∈ C
−∧{σ ∈ ZZ+ | ψσ(A) ∈ C}, if A �∈ C

, A ∈ L. (6.41)

�

The discrete multiscale connectivity defined above is referred to as a discrete clustering-

pyramid multiscale connectivity. All remarks made previously regarding clustering-pyramid

multiscale connectivities apply to the discrete case as well, with obvious modifications.

In particular, the discrete analog of Proposition 6.3.5 is straightforward and will not be

repeated here.
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The following example follows easily from Proposition 4.3.9, Proposition 6.3.14 and

Examples 6.3.2(a),(b).

6.3.15 Example. Let E be a (not necessarily proper) subset of IRn or ZZn, and let

L = P(E), with the points as sup-generators, furnished with a connectivity class C. If B is

convex (in the case in which E ⊆ IRn), B contains the origin of IRn or ZZn, and (σB)v ∩ E
is connected, for all v ∈ E and σ ∈ ZZ+, then the family {δσ(A) = A⊕E σB | σ ∈ ZZ+} is a

strong discrete clustering pyramid on P(E). The associated discrete dilation-pyramid mul-

tiscale connectivity system (ϕ,C) is given by (6.40) and (6.41), with ψσ = δσ, for σ ∈ ZZ+. ♦

Note that, in this framework, we have that ϕ(A) = ∞, if A ∈ C; otherwise, ϕ(A) = −m,

wherem is the minimum number of dilations by B necessary to obtain a connected set. This

provides a practical algorithm for computing ϕ(A). Fig. 6.3 provides an illustration of this

example, where E is a rectangle in ZZ2, the base connectivity is given by the 4-adjacency

connectivity and the basic structuring element is the 3 × 3 cross. This figure depicts a

256-graylevel image of cornea cells, which was pre-processed by an alternating sequential

filter [77] in order to reduce noise. Thresholding this image with increasing threshold values

produces the three discrete binary images A1, A2, and A3 depicted in Fig. 6.3. The associ-

ated degrees of connectivity are also displayed. Since all three images are disconnected, their

degree of connectivity is negative. Note that the more negative the degree of connectivity

is, the more spread apart the particles that make up the images are.

Clearly, a discrete multiscale connectivity can be generated by an anti-granulometry of

connectivity-preserving closings as well; this is a consequence of Example 6.3.2(d). We have

the following example.

6.3.16 Example. Let L be an arbitrary lattice, furnished with a connectivity class C. An

anti-granulometry {φσ | σ ∈ IR+} of connectivity-preserving closings on L is a discrete

clustering pyramid on L. The associated discrete closing-pyramid multiscale connectivity

system (ϕ,C) is given by (6.40) and (6.41), with ψσ = φσ, for σ ∈ IR+. ♦

An interesting example of discrete closing-pyramid multiscale connectivity, based on

morphological sampling operators, was originally suggested to us by H. Heijmans (personal

communication). In Section 4.3.1, a brief review of the theory of morphological sampling was

provided. In what follows, we consider the case in which S = {k1u1+· · ·+knun | ki ∈ ZZ} and

C = {x1u1+· · ·+xnun | −1 < xi < 1}, for linearly independent vectors {ui | i = 1, 2, . . . , n}
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original image

ϕ( )A
1

16= − ϕ( )A
2

41= − ϕ( )A
3

21= −
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: threshold at 190A

3
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:

Figure 6.3: An illustration of discrete dilation-pyramid multiscale connectivity. The original
256-graylevel cornea cell image is thresholded to produce the three discrete binary images
A1, A2, and A3. Since the images are disconnected, their degrees of connectivity are nega-
tive. The more negative the degree of connectivity is, the more spread apart the particles
that make up the images are.

in IRn (in the special case in which {ui | i = 1, 2, . . . , n} is the orthonormal basis of IRn, this

scheme corresponds to the most commonly available discretization architecture implemented

in hardware).

Let {πσ | σ ∈ ZZ+} be a family of approximation closings, given by

πσ(A) =

( ⋃
s∈Sσ

{(Cσ)s | (Cσ)s ∩A = ∅}
)c
, A ∈ P(IRn), (6.42)

where {Sσ | σ ∈ ZZ+} and {Cσ | σ ∈ ZZ+} are families of increasingly coarser sampling grids

and sampling elements, respectively, given by

Sσ = 2σ S, Cσ = 2σ C, σ ∈ ZZ+. (6.43)

Given a set A ∈ P(IRn), πσ(A) gives the discretization of A at scale σ. Note that S0 = S

and C0 = C. The basic discretization π0(A) gives the finest possible discretization of A.



192 Multiscale Connectivity

This may be interpreted as the finest degree of scale allowed by a particular discretization

device. We have the following result.

6.3.17 Proposition. The family {πσ | σ ∈ ZZ+} of approximation closings is an anti-

granulometry on P(IRn). �

Proof. We need to show that πσ ≥ πτ , for σ ≥ τ . Given A ∈ L, we show that πσ(A)c ⊆
πτ (A)c. For convenience, we use the notation Cσ(s) = (Cσ)s. Let v ∈ πσ(A)c. From

(6.42), it follows that this is equivalent to the fact that there is an s0 ∈ Sσ such that

v ∈ Cσ(s0)∩A = ∅. Now, it is easy to verify that Cσ(s) =
⋃
s′∈Sτ

{Cτ (s′) | Cτ (s′) ⊆ Cσ(s)},

for any s ∈ Sσ; i.e., the larger sampling element Cσ(s) equals a union of appropriately

translated smaller sampling elements Cτ (s′). Therefore, we can find an s1 ∈ Sτ such that

v ∈ Cτ (s1) ⊆ Cσ(s0), so that v ∈ Cτ (s1) ∩ A = ∅. In other words, v ∈ πτ (A)c, as

required. Q.E.D.

We define a connectivity class C in P(IRn) to be scaling-invariant if A ∈ C ⇔ σA ∈ C,

for all σ > 0. For instance, the Euclidean topological connectivity class in P(IRn) is scaling-

invariant. Combining Proposition 6.3.17 and Proposition 4.3.11 yields the following result.

6.3.18 Proposition. Let L = P(IRn), furnished with a scaling-invariant connectivity

class C such that

Cs � (R⊕ C) ∈ C, for all s ∈ S, R ⊆ S. (6.44)

Then, the family {πσ | σ ∈ ZZ+} of approximation closings is a discrete clustering pyramid

on P(IRn). �

Note that condition (6.44) is the same as condition (4.55). As we remarked in Sec-

tion 4.3.1, this condition is actually easy to check in practice. In particular, if C is

translation-invariant, then (6.44) can be replaced by C � R ⊕ C ∈ C, where R is a com-

bination of nearest neighbors to the origin of S. Since, due to symmetry, some cases are

redundant, this results in a small number of tests (for small dimensionality n). For exam-

ple, it is straightforward to check that the Euclidean topological connectivity class satisfies

condition (6.44).

In the framework of the discrete closing-pyramid multiscale connectivity generated by

the approximation closings {πσ | σ ∈ ZZ+}, σ-connectivity means connectivity at discretiza-

tion scale −σ, for σ ≤ 0. We have that ϕ(A) = ∞, if A ∈ C; otherwise, ϕ(A) = −m, where
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π π π1 1 0=

π 0

π π π2 2 0=

A

original image basic discretization

Figure 6.4: An illustration of discrete closing-pyramid multiscale connectivity generated by
the approximation closings {πσ | σ ∈ ZZ+}. The original image A and its basic discretization
π0(A) are disconnected. Hence, the degree of connectivity ϕ(A) is strictly negative. Note
that π2(A) is connected, but π1(A) is not; hence, A is −2-connected, but it is not −1-
connected. Equivalently, ϕ(A) = −2.

m is the minimum discretization scale at which A is connected. Note that when A �∈ C, if the

basic discretization is the only connected discretization, then ϕ(A) = 0; otherwise, ϕ(A) is

strictly negative. Fig. 6.4 illustrates this discrete multiscale connectivity framework. Note

that the original image A and its basic discretization π0(A) are disconnected, so that A has a

strictly negative degree of connectivity. Note also that π0(A) ⊆ π1(A) ⊆ π2(A), as required

by the anti-granulometric property of {πσ | σ ∈ ZZ+}. Increasingly coarser discretizations

of A eventually produce a connected image. The (negative) degree of connectivity of A

measures how disconnected A is, with respect to the base connectivity C.

6.3.2 Multiscale Connectivities Generated by Contraction Pyramids

In this subsection, we discuss the notion of contraction pyramids and show that, like

clustering pyramids, contraction pyramids can be used to generate multiscale connectivities.

We will see that these multiscale connectivities are “positive” in nature.

Recall from Section 4.3.2 that a contraction is any increasing and anti-extensive operator

on a lattice L. In the case in which L is atomic, contractions generate new connectivity

classes that consist of the least element, the sup-generators, and the “stable” connected

elements. Next, we extend the notion of contraction to a multiscale framework. In what
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follows, IR∗
+ and ZZ∗

+ denote the set of strictly positive real and strictly positive integer

numbers, respectively.

6.3.19 Definition. Let L be a lattice. A family {ξσ | σ ∈ IR∗
+} of operators on L is said

to be a contraction pyramid on L if:

(i) ξσ is a contraction on L, for each σ ∈ IR∗
+,

(ii) ξσ ≤ ξτ , if σ ≥ τ ,

(iii) ξτ (A) = A, for all τ < σ ⇒ ξσ(A) = A, for σ ∈ IR∗
+, A ∈ L. "

Given a contraction pyramid {ξσ | σ ∈ IR∗
+} on L, we say that A ∈ L is σ-stable if

ξσ(A) = A, for σ ∈ IR∗
+. Properties (i) and (ii) of Definition 6.3.19 are self-evident, whereas

property (iii) says that if A is τ -stable for each τ < σ, then A must be σ-stable, for σ ∈ IR∗
+.

This provides a smoothness constraint on the contraction pyramid.

Contraction pyramids lead to multiscale connectivities on atomic lattices. This is shown

by the following proposition.

6.3.20 Proposition. Let L be an atomic lattice with sup-generating family S, furnished

with a connectivity class C. If {ξσ | σ ∈ IR∗
+} is a contraction pyramid on L, then C:

IR → P(L), given by

C(σ) =

 {O} ∪ S ∪ {A ∈ C | ξσ(A) = A}, if σ > 0

C, if σ ≤ 0
, σ ∈ IR, (6.45)

is a connectivity pyramid on L, with associated connectivity measure ϕ: L → IR given by

ϕ(A) =


∞, if A = O or A ∈ S∨{σ ∈ IR∗

+ | ξσ(A) = A}, if A ∈ C � ({O} ∪ S)

−∞, if A �∈ C
, A ∈ L. (6.46)

�

Proof. For convenience, we use the notation S = {O} ∪ S. Note that C(σ) = S ∪ (C ∩
Inv(ξσ)), for σ > 0. From Proposition 4.3.16, it follows that C(σ) is a connectivity class in

L, for each σ ∈ IR, which shows axiom (i) of a connectivity pyramid. To show axiom (ii),

we need to prove that C(σ) ⊆ C(τ), if σ ≥ τ . If σ, τ ≤ 0, there is nothing to show. If σ ≤ 0

and τ > 0, we have that C(σ) = C ⊆ S ∪ (C ∩ Inv(ξσ)) = C(τ). If σ, τ > 0, we have that
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ξσ ≤ ξτ ⇒ Inv(ξσ) ⊆ Inv(ξτ ) ⇒ C(σ) = S∪(C∩Inv(ξσ)) ⊆ S∪(C∩Inv(ξτ )) = C(τ). To show

axiom (iii), we need to prove that C(σ) =
⋂
τ<σC(τ), for σ ∈ IR. The direct inclusion

is trivial. To show the converse inclusion, note that if σ ≤ 0, there is nothing to show,

whereas if σ > 0, property (iii) of Definition 6.3.19 implies that Inv(ξσ) ⊇ ⋂ τ<σ Inv(ξτ ),

so that C(σ) = S ∪ (C ∩ Inv(ξσ)) ⊇ S ∪ (C ∩⋂ τ<σ Inv(ξτ )) =
⋂
τ<σ(S ∪ (C ∩ Inv(ξτ ))) =⋂

τ<σC(τ), by the infinite ∧-distributivity of P(L). Finally, (6.46) follows easily from (6.45)

and (6.11). Q.E.D.

The previous multiscale connectivity is referred to as a contraction-pyramid multiscale

connectivity. In this framework, if A �∈ C, then A is fully disconnected, whereas if A ∈ C,

then its degree of connectivity is positive (nonnegative). If A = O or A ∈ S, then A is of

course fully connected. On the other hand, if A ∈ C � ({O} ∪ S), then A is σ-connected

if A is σ-stable, for σ ∈ IR+. Hence, connectivity at positive scales corresponds to how

stable a connected element A is with respect to the contraction pyramid. In most cases,

this measures the “strength” of connectivity of A, with respect to the base connectivity C.

The main example of a contraction pyramid is given by a granulometry that satisfies a

certain smoothness condition. This is given by the following proposition. Recall that ψ◦

denotes the characteristic opening associated with an operator ψ.

6.3.21 Proposition. Let L be a lattice. A granulometry {θσ | σ ∈ IR∗
+} on L, such that

θσ =

(∧
τ<σ

θτ

)◦
, σ ∈ IR∗

+, (6.47)

is a contraction pyramid on L. �

Proof. Properties (i) and (ii) of Definition 6.3.19 are obvious. Now, for a given σ ∈ IR∗
+,

note that
∧
τ<σ θτ is an increasing and anti-extensive operator. We can then use Corol-

lary 2.2.7 to conclude that Inv(θσ) = Inv
(
(
∧
τ<σ θτ )

◦) = Inv
(∧
τ<σ θτ

)
=
⋂
τ<σ Inv(θτ ),

which clearly implies property (iii) of Definition 6.3.19. Q.E.D.

The smoothness condition (6.47) implies that, for each σ ∈ IR∗
+, θσ is the greatest

opening smaller than
∧
τ<σ θτ . A contraction pyramid {θσ | σ ∈ IR∗

+} that consists of

openings is referred to as an opening pyramid, with associated opening-pyramid multiscale

connectivity system (ϕ,C), given by (6.45) and (6.46), with ξσ = θσ, for σ ∈ IR∗
+. Moreover,

in this case we say that A is σ-open, rather than σ-stable, if θσ(A) = A, for σ ∈ IR∗
+ and

A ∈ L. Note that Theorem 6.1.13 implies that, for each x ∈ S, the family {γσ,x | σ ∈ IR∗
+}
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of σ-connectivity openings is a granulometry on L that satisfies (6.47); i.e., it is an opening

pyramid.

Another example of an opening pyramid is given by the following proposition.

6.3.22 Proposition. Let E be a closed and bounded subset of IRn, furnished with the

Euclidean topology. Let L = F(E), and let B ∈ F(E) be a structuring element.

(a) The restriction of the opening θ̂σ(A) = A◦σB on P(E) to F(E) defines an opening

θσ on F(E); i.e.,

A ∈ F(E) ⇒ A◦σB ∈ F(E), σ ∈ IR∗
+. (6.48)

In particular, {θσ(A) = A◦σB | σ ∈ IR∗
+} is a granulometry on F(E).

(b) If B is a Euclidean disk, then θσ =
∧
τ<σ θτ , for σ ∈ IR∗

+; i.e., for A ∈ F(E),

A◦σB =
⋂
τ<σ

A◦ τB, σ ∈ IR∗
+. (6.49)

In particular, the granulometry {θσ(A) = A◦σB | σ ∈ IR∗
+} satisfies condition (6.47)

and is therefore an opening pyramid on F(E). �

Proof. (a): Since B is closed and E is bounded, B is compact in IRn, and so is σB, for

σ ∈ IR+. Since A is closed in IRn, it follows from [34, Lemma 7.42] that A◦σB is closed in

IRn, so that A◦σB ∈ F(E), for σ ∈ IR∗
+.

(b): The inequality A◦σB ⊆ ⋂ τ<σ A◦ τB, for σ ∈ IR∗
+, is obvious. We show the

reverse inequality. Without loss of generality, we assume that B is a disk of unit radius.

Let σ ∈ IR∗
+ and A ∈ F(E). Consider the function d∂A: A→ IR, given by

d∂A(v) =
∧

{d(v, w) | w ∈ ∂A}, v ∈ A, (6.50)

where d(u, v) denotes the Euclidean distance between u and v, and ∂A denotes the boundary

of A. The value d∂A(v) gives the distance of a point v ∈ A to the boundary of A. Note

that d∂A is an infimum of continuous functions d(·, v), for v ∈ d∂A; hence, d∂A is a u.s.c.

function. From the definition of a structural opening, it is clear that

u ∈ A◦σB ⇔ ∃ v ∈ A s.t. d(u, v) ≤ σ ≤ d∂A(v). (6.51)

Hence, if u ∈ ⋂ τ<σ A◦ τB, there is a sequence {vτi} ⊆ A such that τi ↑ σ and d(u, vτi) ≤
τi ≤ d∂A(vτi), for each τi. Since A is closed and bounded, it is compact in the Euclidean
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topology. Hence, the sequence {vτi} has a convergent subsequence {vτik } that converges to

a point v ∈ A. It then follows, by lower semi-continuity of d(u, ·) on the left side and by

upper semi-continuity of d∂A on the right side, that d(u, v) ≤ σ ≤ d∂A(v); i.e., u ∈ A◦σB,

as required. Q.E.D.

The following definition introduces the multiscale analog of locally-invariant openings

(see Definition 4.3.17).

6.3.23 Definition. An opening pyramid {θσ | σ ∈ IR∗
+} on a lattice L is said to be locally

invariant with respect to a connectivity class C in L if each opening θσ is locally invariant

with respect to C; i.e., if, for each A ∈ L,

θσ(A) = A ⇒ θσγx(A) = γx(A), σ ∈ IR∗
+, x ∈ S. (6.52)

"

In other words, an opening pyramid on L is locally invariant if, given any A ∈ L such

that A is σ-open, then each connected component of A is also σ-open, for σ ∈ IR∗
+.

We have the following result.

6.3.24 Lemma. Suppose that E is a Hausdorff space and Ĉ is a compatible connectivity

class in P(E), with the points as sup-generators. Let θ̂ be an opening on P(E), such that

its restriction to F(E) defines an opening θ on F(E). If θ̂ is locally invariant with respect

to Ĉ, then θ is locally invariant with respect to the connectivity class C = Ĉ ∩ F(E). �

Proof. From Proposition 4.1.11, it follows that the connectivity openings {γx | x ∈ S}
associated with C are the restriction to F(E) of the connectivity openings {γ̂x | x ∈ S}
associated with Ĉ. Therefore, for all A ∈ F(E), we have that θ(A) = θ̂(A) = A ⇒
θγx(A) = θ̂ γ̂x(A) = γx(A) = γ̂x(A), for x ∈ S; i.e., θ(A) = A⇒ θγx(A) = γx(A), for x ∈ S,

as required. Q.E.D.

By using the previous lemma and Corollary 4.3.19, we get the following result.

6.3.25 Proposition. Let E be a bounded and closed subset of IRn, with the Euclidean

topology. Let L = F(E), with the points as sup-generators, furnished with the connectivity

class C of topologically connected closed sets in E. For a connected structuring element

B ∈ F(E), the opening θσ(A) = A◦σB on F(E) is locally invariant with respect to C, for

σ ∈ IR∗
+. �
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Proof. From Proposition 4.3.20(a), we have that θσ is the restriction of the operator

θ̂σ(A) = A◦σB on P(E) to F(E), for σ ∈ IR∗
+. Moreover, it follows easily from Corol-

lary 4.3.19 that the granulometry {θ̂σ(A) | σ ∈ IR∗
+} on P(E) is locally invariant with

respect to the connectivity class Ĉ of the topologically connected sets in E. Note that

C = Ĉ ∩ F(E). It then follows from Lemma 6.3.24 that θσ is locally invariant with respect

to C. Q.E.D.

As a straightforward consequence of Proposition 4.3.20, it is possible to characterize

the σ-connectivity openings and the σ-reconstruction operators associated with a multi-

scale connectivity generated by a locally-invariant opening pyramid. We have the following

proposition.

6.3.26 Proposition. Let L be a lattice with a sup-generating family S, furnished with

a connectivity class C. Let (ϕ,C) be the multiscale connectivity system generated by a

locally-invariant opening pyramid {θσ | σ ∈ IR∗
+} on L, given by (6.45) and (6.46), with

ξσ = θσ, for σ ∈ IR∗
+. Let {γx | x ∈ S} and ρ be the connectivity openings and the

reconstruction operator, respectively, associated with C. Then:

(a) The σ-connectivity openings associated with (ϕ,C) are given by

γσ,x(A) =


γxθσ(A), if x ≤ θσ(A)

x, if θσ(A) �≥ x ≤ A
O, if x �≤ A

, σ > 0, (6.53)

and

γσ,x(A) = γx(A), σ ≤ 0, (6.54)

for A ∈ L, x ∈ S.

(b) If L is infinite ∨-distributive, the σ-reconstruction operators associated with (ϕ,C)

are given by

ρσ(A |M) =

 (A ∧M) ∨ ρ(θσ(A) |M), for σ > 0

ρ(A |M), for σ ≤ 0
, (6.55)

for A,M ∈ L. �

The following corollary is an immediate consequence of part (a) of the previous propo-

sition.
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6.3.27 Corollary. Let L be a lattice with a sup-generating family S, furnished with a

connectivity class C, with ↓-continuous connectivity openings. Let (ϕ,C) be the multiscale

connectivity system generated by a locally-invariant opening pyramid {θσ | σ ∈ IR∗
+} on L,

given by (6.45) and (6.46), with ξσ = θσ, for σ ∈ IR∗
+. If, for each σ ∈ IR∗

+, the opening

θσ is ↓-continuous, then the σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S} associated with

(ϕ,C) are ↓-continuous. �

The following result follows easily from Proposition 7.39 and Corollary 7.44, in [34].

6.3.28 Proposition. Let E be a bounded and closed subset of IRn, furnished with the

Euclidean topology. For B ∈ F(E), the operator θσ(A) = A◦σB on F(E) is ↓-continuous,

for σ ∈ IR+. �

Propositions 6.3.20, 6.3.22–6.3.28, and Corollary 6.3.27 lead to the following example.

6.3.29 Example. Let E be a connected, bounded and closed subset of IRn, with the Eu-

clidean topology. Let L = F(E), with the points as sup-generators, furnished with the

connectivity class C of topologically connected closed sets in E, and let B ∈ F(E) be a Eu-

clidean disk. The granulometry {θσ(A) = A◦σB | σ ∈ IR∗
+} is a locally-invariant opening

pyramid on F(E), with associated opening-pyramid multiscale connectivity system (ϕ,C),

given by (6.45) and (6.46), with ξσ = θσ, for σ ∈ IR∗
+. Furthermore, the σ-connectivity

openings {γσ,x | σ ∈ IR, x ∈ S} associated with (ϕ,C) are ↓-continuous. ♦

Note that, in this framework, we have that ϕ(A) = −∞, if A �∈ C, whereas ϕ(A) =∨{σ ∈ IR∗
+ | A◦σB = A}, if A ∈ C � ({O} ∪ S); i.e., the “supremum size” at which A is

still σ-open. Fig. 6.5 provides an illustration, where E is a square subset of IR2 with the

Euclidean topology, and B ∈ F(E) is an Euclidean disk. Note that the original set A is

connected, so that it has a positive degree of connectivity. Opening A by increasingly larger

scaled replicas of the structuring element B eventually produces a set that differs from the

original set. In this case, the (positive) degree of connectivity of A measures how strongly

connected A is, with respect to the base connectivity C.

The discretization of the theory of contraction-pyramid multiscale connectivity presented

above is straightforward. The following is the discrete analog of Definition 6.3.19.

6.3.30 Definition. Let L be a lattice. A decreasing family {ξσ | σ ∈ ZZ∗
+} of contractions

on L is said to be a discrete contraction pyramid on L. "
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Figure 6.5: An example of opening-pyramid multiscale connectivity. The original set A is
connected; hence, its degree of connectivity ϕ(A) is positive. Note that A is σ-open, but
not τ -open. Therefore, A is σ-connected, but not τ -connected. Equivalently, σ ≤ ϕ(A) < τ .

The following is the discrete analog of Proposition 6.3.20.

6.3.31 Proposition. Let L be an atomic lattice with sup-generating family S, furnished

with a connectivity class C. If {ξσ | σ ∈ ZZ∗
+} is a discrete contraction pyramid on L, then

C: ZZ → P(L), given by

C(σ) =

 {O} ∪ S ∪ {A ∈ C | ξσ(A) = A}, if σ > 0

C, if σ ≤ 0
, σ ∈ ZZ, (6.56)

is a discrete connectivity pyramid on L, with associated discrete connectivity measure

ϕ: L → ZZ given by

ϕ(A) =


∞, if A = O or A ∈ S∨{σ ∈ ZZ∗

+ | ξσ(A) = A}, if A ∈ C � ({O} ∪ S)

−∞, if A �∈ C
, A ∈ L. (6.57)

�

The discrete multiscale connectivity defined above is referred to as a discrete contraction-

pyramid multiscale connectivity. All the remarks made previously regarding contraction-
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pyramid multiscale pyramids apply to the discrete case as well, with obvious modifications.

The following result is easy to prove.

6.3.32 Proposition. Let L be a lattice. A granulometry {θσ | σ ∈ ZZ∗
+} on L is a discrete

contraction pyramid on L. �

A discrete contraction pyramid {θσ | σ ∈ ZZ∗
+} that consists of openings is referred to as a

discrete opening pyramid, with associated discrete opening-pyramid multiscale connectivity

system (ϕ,C), given by (6.56) and (6.57), with ξσ = θσ, for σ ∈ ZZ∗
+. The definition of

locally-invariant discrete opening pyramids and the discrete analog of Proposition 6.3.22

are straightforward and will not be repeated here.

The following example is a straightforward consequence of Corollary 4.3.19 and Propo-

sitions 6.3.31 and 6.3.32.

6.3.33 Example. Let E be a (not necessarily proper) subset of IRn or ZZn, and let L = P(E),

with the points as sup-generators, furnished with a translation-invariant connectivity class C.

If B ∈ C, then the granulometry {θσ(A) = A◦σB | σ ∈ ZZ∗
+} is a locally-invariant discrete

opening pyramid on P(E). The associated discrete opening-pyramid multiscale connectivity

system (ϕ,C) is given by (6.56) and (6.57), with ξσ = θσ, for σ ∈ ZZ∗
+. ♦

Note that, in this framework, we have that ϕ(A) = −∞, if A �∈ C, whereas ϕ(A) = m, if

A ∈ C � ({O} ∪ S), where m is the maximum size of the structuring element for which the

object is still invariant under the structural opening. This provides a practical algorithm

for computing ϕ(A). Fig. 6.6 provides an illustration of this example, where E is a square

subset of ZZ2, the base connectivity is given by 4-adjacency connectivity and the basic

structuring element is a horizontal line of length 2. This figure depicts a 256-graylevel

microscopic image of tracks in an electronic circuit and a binary version of this image,

obtained by thresholding at level 200. Note that some tracks are faulty. Three tracks are

considered separately, which leads to three discrete binary images A1, A2, and A3, depicted

in Fig. 6.6; their associated degrees of connectivity are also displayed. Tracks 2 and 6 have

positive degree of connectivity, whereas the degree of connectivity of track 8 is −∞, since

this track is fully disconnected. Track 6 has a higher degree of connectivity than track 2,

which indicates the track 6 is “more connected” than track 2.
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original image threshold at 200

ϕ( )A
1

2=

track 2A1:

ϕ( )A
2

6=

track 6A2:

ϕ( )A
3

= −∞
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Figure 6.6: An example of discrete opening-pyramid multiscale connectivity. A horizontal
line is used as structuring element. The original 256-graylevel microscopic image of tracks
in an electronic circuit is binarized by thresholding at level 200. Three tracks are considered
separately, leading to the discrete binary images A1, A2, and A3. The more positive the
degree of connectivity is, the stronger the connectivity of the particular object is.

6.4 Second-Generation Multiscale Connectivity

In this section, we study the problem of creating new multiscale connectivities from

existing ones. Following Serra’s nomenclature for the single-scale case, we refer to these new

multiscale connectivities as second-generation multiscale connectivities. As it will become

clear, this section extends many of the concepts and results discussed in Section 4.3 to the

multiscale case.

6.4.1 Multiscale Connectivity Based on Clustering

Similarly to the single-scale case, we show next that it is possible to start with a given

multiscale connectivity and obtain a second-generation multiscale connectivity based on

clustering.
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First, we study a class of operators that increase connectivity with respect to a given mul-

tiscale connectivity. We show that these operators are the multiscale analogs of connectivity-

preserving operators in the single-scale case.

6.4.1 Definition. Let L be a lattice, furnished with a multiscale connectivity system

(ϕ,C). An operator ψ on L is said to be connectivity-increasing if

ϕ(ψ(A)) ≥ ϕ(A), for all A ∈ L. (6.58)

"

Therefore, a connectivity-increasing operator ψ can never decrease the degree of con-

nectivity of an object. As might be expected, σ-connectivity openings are connectivity-

increasing. This is shown by the following result.

6.4.2 Proposition. Let L be a lattice with sup-generating family S, furnished with a

multiscale connectivity system (ϕ,C). The σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S}
associated with (ϕ,C) are connectivity-increasing. �

Proof. Let A ∈ L and σ ∈ IR. If x �≤ A, then γσ,x(A) = O, which trivially implies

that ϕ(γσ,x(A)) ≥ ϕ(A). Hence, we can assume that x ≤ A. If ϕ(A) ≥ σ, we have that

A ∈ C(σ) ⇒ γσ,x(A) = A; hence, ϕ(γσ,x(A)) = ϕ(A). On the other hand, if ϕ(A) < σ,

then γσ,x(A) ∈ C(σ) ⇒ ϕ(γσ,x(A)) ≥ σ > ϕ(A). In any case, we get ϕ(γσ,x(A)) ≥ ϕ(A), as

required. Q.E.D.

The next result shows that connectivity-increasing operators constitute the multiscale

extension of connectivity-preserving operators.

6.4.3 Proposition. Let L be a lattice, and let (ϕ,C) be a multiscale connectivity system

on L. An operator ψ on L is connectivity-increasing if and only if it is connectivity-

preserving with respect to each level of C; i.e., ψ(C(σ)) ⊆ C(σ), for each σ ∈ IR. �

Proof. “⇒”: For a given σ ∈ IR and C ∈ C(σ), we have that ϕ(ψ(C)) ≥ ϕ(C) ≥ σ ⇒
ψ(C) ∈ C(σ), so that ψ(C(σ)) ⊆ C(σ), as required.

“⇐”: Let A ∈ L, and ϕ(A) = σ0. If σ0 = −∞, then ϕ(ψ(A)) ≥ ϕ(A) = −∞. If σ0 ∈ IR,

it follows that A ∈ C(σ0) ⇒ ψ(A) ∈ C(σ0) ⇒ ϕ(ψ(A)) ≥ σ0 = ϕ(A). Finally, if σ0 = ∞,

it follows that A ∈ C(σ) ⇒ ψ(A) ∈ C(σ), for all σ ∈ IR, so that ϕ(ψ(A)) = ϕ(A) = ∞.

Combining these three cases, we get ϕ(ψ(A)) ≥ ϕ(A), as required. Q.E.D.
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Note that the previous result leads to an alternative proof of Proposition 6.4.2. In

addition, by using the fact that an extensive dilation δ on L is connectivity-preserving if

and only if δ(x) ∈ C, for all x ∈ S (see the proof of Proposition 4.3.9(a)), we can easily

show the following result.

6.4.4 Proposition. Let L be a lattice with a sup-generating family S, furnished with

a multiscale connectivity system (ϕ,C). An extensive dilation δ on L is connectivity-

increasing if and only if δ(x) is fully connected, for every x ∈ S. �

For instance, let L = P(E), where E = IRn or E = ZZn, with the points as sup-generators,

and let (ϕ,C) be a translation-invariant multiscale connectivity system on P(E). If B

is a fully connected structuring element that contains the origin of E, then clearly the

translation-invariant dilation δB(A) = A⊕B is a connectivity-increasing operator on P(E).

For a particular case, consider L = P(ZZ2), with the points as sup-generators, and let (ϕ,C)

be the translation-invariant multiscale connectivity system associated with Example 6.1.2.

If B is the cross structuring element, then the dilation δB(A) = A⊕B will always increase

connectivity on P(ZZ2).

In Section 4.3.1, we defined clusterings. Next, we define multiscale clusterings.

6.4.5 Definition. Let L be a lattice, furnished with a multiscale connectivity system (ϕ,C).

An operator ψ on L is said to be a multiscale clustering if ψ is a clustering with respect

to each level of C. A multiscale clustering ψ is said to be strong if ψ is a strong clustering

with respect to each level of C; i.e., if

ψ(id ∧ γσ,xψ) = γσ,xψ, σ ∈ IR, x ∈ S, (6.59)

where {γσ,x | σ ∈ IR, x ∈ S} are the σ-connectivity openings associated with (ϕ,C). "

The following result provides a characterization of multiscale clusterings.

6.4.6 Proposition. Let L be a lattice with a sup-generating family S, furnished with a

multiscale connectivity system (ϕ,C). An operator ψ on L is a multiscale clustering if and

only if:

(i) ψ is increasing and extensive.

(ii) ψ is connectivity-increasing.

(iii) For a family {Aα} in L such that
∧
Aα �= O, we have ϕ(ψ(

∨
Aα)) ≥ ∧ϕ(ψ(Aα)). �
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Proof. It follows from Definitions 4.3.4 and 6.4.5 that ψ is a multiscale clustering if and

only if: (i′) it is increasing and extensive, (ii′) it is connectivity-preserving at each scale,

and (iii′) for a family {Aα} in L such that
∧
Aα �= O, we have that ψ(Aα) ∈ C(σ), for all α

⇒ ψ(
∨
Aα) ∈ C(σ), for each σ ∈ IR. Conditions (i) and (i′) are the same, while conditions

(ii) and (ii′) are equivalent, by Proposition 6.4.3. It remains to show that conditions (iii)

and (iii′) are equivalent. Let {Aα} be a family in L such that
∧
Aα �= O. We show that

(iii′) ⇒ (iii). Let σ0 =
∧
ϕ(ψ(Aα)). If σ0 = −∞, there is nothing to prove. If σ0 ∈ IR, we

have ϕ(ψ(Aα)) ≥ σ0 ⇒ ψ(Aα) ∈ C(σ0), for all α ⇒ ψ(
∨
Aα) ∈ C(σ0) ⇒ ϕ(ψ(

∨
Aα)) ≥ σ0.

Finally, if σ0 = ∞, it follows that, for each α, ϕ(ψ(Aα)) = ∞ ⇒ Aα ∈ C(σ), for all σ ∈ IR

⇒ ψ(
∨
Aα) ∈ C(σ), for all σ ∈ IR ⇒ ϕ(ψ(

∨
Aα)) = ∞ = σ0. Combining these three

cases, we get ϕ(ψ(
∨
Aα)) ≥ σ0 =

∧
ϕ(ψ(Aα)), as required. To show that (iii) ⇒ (iii′),

note that, given σ ∈ IR, we have ψ(Aα) ∈ C(σ), for all α ⇒ ∧
ϕ(ψ(Aα)) ≥ σ, so that

ϕ(ψ(
∨
Aα)) ≥ ∧ϕ(ψ(Aα)) ≥ σ ⇒ ψ(

∨
Aα) ∈ C(σ), as required. Q.E.D.

As an example, it follows from the above result and Proposition 6.4.4 that an extensive

dilation δ on L such that δ(x) is fully connected, for every x ∈ S, is a multiscale clus-

tering on L (this also follows easily from Proposition 4.3.9(a)). Another example of mul-

tiscale clustering is given by connectivity-increasing closings, since, by Proposition 4.3.8,

connectivity-preserving closings are clusterings.

The following result is the multiscale version of Proposition 4.3.5.

6.4.7 Proposition. Let L be a lattice with a sup-generating family S, furnished with

a multiscale connectivity system (ϕ,C), and let ψ be a multiscale clustering on L. We

have that:

(a) ϕψ = ϕ(ψ(·)) is a connectivity measure on L, such that ϕ ≤ ϕψ.

(b) Cψ: IR → P(L), given by

Cψ(σ) = ψ−1(C(σ)) = {A ∈ L | ψ(A) ∈ C(σ)}, for σ ∈ IR, (6.60)

is a connectivity pyramid on L, such that C ≤ Cψ.

(c) (ϕψ,Cψ) constitutes a multiscale connectivity system on L.

(d) For A ∈ L, the σ-partition of the HPCC cψA of A according to (ϕψ,Cψ) is coarser than

the σ-partition of the HPCC cA of A according to (ϕ,C) (i.e., cψA is coarser than cA):

cA(σ, x) = γσ,x(A) ≤ γψσ,x(A) = cψA(σ, x), for all σ ∈ IR, x ≤ A, (6.61)
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where {γσ,x | σ ∈ IR, x ∈ S} and {γψσ,x | σ ∈ IR, x ∈ S} are the σ-connectivity openings

associated with (ϕ,C) and (ϕψ,Cψ), respectively. �

Proof. (a): Note that ϕψ(O) = ϕ(ψ(O)) ≥ ϕ(O) = ∞ ⇒ ϕψ(O) = ∞, since ψ is

connectivity-increasing. By using the same argument, we can show that ϕψ(x) = ∞, for

x ∈ S. This shows axiom (i) of a connectivity measure. Axiom (ii) follows directly from

item (iii) of Proposition 6.4.6. The inequality ϕ ≤ ϕψ is a direct consequence of the fact

that ψ is connectivity-increasing: ϕψ(A) = ϕ(ψ(A)) ≥ ϕ(A), for all A ∈ L.

(b): Let Γ be the mapping from M(L) into Y(L), given by (6.10). From part (a), we have

that ϕψ ∈ M(L). Now, Γ(ϕψ(σ)) = {A ∈ L | ϕψ(A) ≥ σ} = {A ∈ L | ϕ(ψ(A)) ≥ σ} =

{A ∈ L | ψ(A) ∈ C(σ)} = Cψ(σ), for σ ∈ IR. Therefore, Cψ ∈ Y(L); i.e., Cψ is a

connectivity pyramid on L. The inequality C ≤ Cψ follows from ϕ ≤ ϕψ and the fact that

Γ is order-preserving.

(c): This is a consequence of the argument used in the proof of part (b).

(d): This follows easily from the fact that C ≤ Cψ. Q.E.D.

The multiscale connectivity system (ϕψ,Cψ) of Proposition 6.4.7 is said to generate a

clustering-based second-generation multiscale connectivity on L. This multiscale connectiv-

ity is “richer” than the original multiscale connectivity, in the sense that every element of

the lattice has a higher degree of connectivity, there are more σ-connected elements at each

scale σ, and the σ-partitions of connected components are coarser.

Finally, we give the multiscale version of Proposition 4.3.6. The proof is omitted, since

it is a direct extension of the proof of the single-scale result.

6.4.8 Proposition. Let L be a lattice with a sup-generating family S, furnished with a

multiscale connectivity system (ϕ,C). Let {γσ,x | σ ∈ IR, x ∈ S} and {ρσ | σ ∈ IR} be

the σ-connectivity openings and the σ-reconstruction operators, respectively, associated

with (ϕ,C). If ψ is a strong multiscale clustering on L, then:

(a) The σ-connectivity openings associated with (ϕψ,Cψ) are given by

γψσ,x(A) =

 A ∧ γσ,xψ(A), if x ≤ A
O, if x �≤ A

, σ ∈ IR, x ∈ S, (6.62)

for A ∈ L.
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(b) If L is infinite ∨-distributive, the σ-reconstruction operators associated with (ϕψ,Cψ)

are given by

ρψσ (A |M) = A ∧ ρσ(ψ(A) | A ∧M), σ ∈ IR, (6.63)

for A,M ∈ L. �

6.4.2 Multiscale Connectivity Based on Contraction

Another way to construct a new multiscale connectivity from an existing one is by means

of a contraction.

The following is the multiscale version of Proposition 4.3.16.

6.4.9 Proposition. Consider an atomic lattice L with sup-generating family S, furnished

with a multiscale connectivity system (ϕ,C). Let ξ be a contraction on L. The mapping

Cξ: IR → P(L), given by

Cξ(σ) = {O} ∪ S ∪ {A ∈ C(σ) | ξ(A) = A}, σ ∈ IR, (6.64)

is a connectivity pyramid on L, such that Cξ ≤ C, with associated connectivity measure

ϕξ: L → IR, given by

ϕξ(A) =

 ϕ(A), if A = O or A ∈ S or ξ(A) = A

−∞, otherwise
, A ∈ L, (6.65)

such that ϕξ ≤ ϕ. �

Proof. From Proposition 4.3.16, we have that Cξ(σ) is a connectivity class in L, for each

σ ∈ IR, which shows axiom (i) of a connectivity pyramid. Clearly, C(σ) ⊆ C(τ) implies

that Cξ(σ) ⊆ Cξ(τ), for σ ≥ τ , which shows axiom (ii) of a connectivity pyramid. To

verify axiom (iii), note that Cξ(σ) = {O} ∪ S ∪ [C(σ) ∩ Inv(ξ)]. Therefore, Cξ(σ) =

{O} ∪ S ∪ [(
⋂
τ<σC(τ)) ∩ Inv(ξ)] = {O} ∪ S ∪ ⋂τ<σ[C(τ) ∩ Inv(ξ)] =

⋂
τ<σ({O} ∪ S ∪

[C(τ)∩ Inv(ξ)]) =
⋂
τ<σC

ξ(τ), since P(L) is infinite ∧-distributive. Moreover, it is obvious

that Cξ(σ) ⊆ C(σ), for each σ ∈ IR; i.e., Cξ ≤ C. Finally, (6.65) follows easily from (6.64)

and (6.11), whereas the inequality ϕξ ≤ ϕ is a direct consequence of (6.65) or, alternatively,

of the fact that Cξ ≤ C. Q.E.D.
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The multiscale connectivity system (ϕξ,Cξ) of Proposition 6.4.9 is said to generate a

contraction-based second-generation multiscale connectivity on L. Note that all elements

of L that are not invariant to ξ become fully disconnected in the contraction-based mul-

tiscale connectivity (this affords robustness against noise). Therefore, the new multiscale

connectivity is “stricter” than the original one; i.e., there are fewer σ-connected elements

at each scale σ.

In the case in which ξ is an opening ξ = θ on L, the multiscale connectivity sys-

tem (ϕθ,Cθ), given by (6.64) and (6.65), with ξ = θ, defines an opening-based second-

generation multiscale connectivity.

As in the single-scale case, the following property of θ allows one to characterize the σ-

connectivity openings and the σ-reconstruction operators associated with an opening-based

multiscale connectivity.

6.4.10 Definition. An opening θ on a lattice L is said to be locally invariant with respect

to a multiscale connectivity system (ϕ,C) on L if

θ(A) = A ⇒ θγσ,x(A) = γσ,x(A), σ ∈ IR, x ∈ S. (6.66)

where {γσ,x | σ ∈ IR, x ∈ S} are the σ-connectivity openings associated with (ϕ,C). "

Note that the previous definition is the multiscale extension of Definition 4.3.17.

The following is the multiscale version of Proposition 4.3.18. The proof is omitted, since

it is a straightforward extension of the proof of the single-scale result.

6.4.11 Proposition. Let L be an infinite ∨-distributive lattice with a sup-generating fam-

ily S, furnished with a multiscale connectivity system (ϕ,C). An opening θ on L is locally

invariant with respect to (ϕ,C) if and only if there exists a family B of fully connected

elements (i.e., B ⊆ ⋂σ∈IR C(σ)), such that

θ(A) = θB(A) =
∨

{B ∈ B | B ≤ A}. (6.67)

�

A straightforward corollary of the previous result is that, given a dilation δ on L such

that δ(x) is fully connected, for each x ∈ S, the adjunctional opening θ = δε on L is

locally invariant with respect to (ϕ,C) (see also Corollary 4.3.19). For instance, consider

a translation-invariant multiscale connectivity system (ϕ,C) on L = P(IRn). If B is a
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fully connected structuring element, then the structural opening θB(A) = A◦B is locally

invariant with respect to (ϕ,C).

The usefulness of locally-invariant openings becomes clear from the following result,

which is the multiscale version of Proposition 4.3.20. The proof is omitted, since it is a

direct extension of the proof of the single-scale result.

6.4.12 Proposition. Consider an atomic lattice L with sup-generating family S, furnished

with a multiscale connectivity system (ϕ,C). Let {γσ,x | σ ∈ IR, x ∈ S} and {ρσ | σ ∈ IR}
be the σ-connectivity openings and the σ-reconstruction operators, respectively, associated

with (ϕ,C). Let θ be an opening on L that is locally invariant with respect to (ϕ,C), and

let (ϕθ,Cθ) be the opening-based multiscale connectivity system generated by θ, given by

(6.64) and (6.65), with ξ = θ.

(a) The σ-connectivity openings associated with (ϕθ,Cθ) are given by

γθσ,x(A) =


γσ,xθ(A), if x ≤ θ(A)

x, if θ(A) �≥ x ≤ A
O, if x �≤ A

, σ ∈ IR, x ∈ S, (6.68)

for A ∈ L.

(b) The σ-reconstruction operators associated with (ϕθ,Cθ) are given by

ρθσ(A |M) = (A ∧M) ∨ ρσ(θ(A) |M), σ ∈ IR, (6.69)

for A,M ∈ L. �

6.5 Multiscale Tools

In this section, we discuss the application of multiscale connectivities to image analysis

tasks, such as pyramid decompositions, hierarchical segmentation and hierarchical cluster-

ing, and multiscale features.

6.5.1 Pyramid Decompositions

Discrete multiscale connectivities lead to an interesting example of a nonlinear multi-

scale signal decomposition scheme. The basic idea is to use σ-reconstruction operators as
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the analysis operators of a nonlinear pyramid decomposition scheme. In contrast to pyra-

mid decompositions based on pixel-based linear or nonlinear operators [27], the pyramid

decomposition that we propose here does not work at the pixel level, but at the level of

the connected components of an object at various scales. This leads to a novel object-based

multiscale signal decomposition scheme. This scheme could be thought of as the pyramid

transform analog of the so-called second-generation image coding techniques [40], which

constitute an object-based approach to image compression that codes homogeneous regions

(objects) in an image.

In the following, we briefly outline a few basic aspects of the theory of multiscale signal

decomposition. For a more detailed treatment, the reader is referred to [27].

Consider a family {Vσ | σ ∈ ZZ} of multiscale spaces, such that the nesting condition

Vσ ⊆ Vτ , if σ ≥ τ , is satisfied (this condition is a basic requirement for a multiscale signal

decomposition scheme, as argued in [53]). The space Vσ contains the signals of interest at

scale σ. In addition, consider a family {ψ↑
σ : Vσ → Vσ+1 | σ ∈ ZZ} of analysis operators and

a family {ψ↓
σ : Vσ+1 → Vσ | σ ∈ ZZ} of synthesis operators. The analysis operator ψ↑

σ maps a

signal at scale σ to scale σ + 1, reducing information in the process, whereas the synthesis

operator ψ↓
σ maps this information back to scale σ. The composition ψ↓

σψ
↑
σ is an operator

on Vσ, known as the approximation operator. On the other hand, the composition ψ↑
σψ

↓
σ is

an operator on Vσ+1 that must always be the identity operator. The condition ψ↑
σψ

↓
σ = id

on Vσ+1 is referred to as the pyramid condition (in [27], it is shown that the pyramid

condition is a basic requirement for a multiscale decomposition scheme).

Assume that, for each σ ∈ ZZ, there is a subtraction operation −̇: Vσ×Vσ → Yσ, where Yσ

is a difference space, and an addition operation +̇ : Vσ × Yσ → Vσ, such that

ψ↓
σψ

↑
σ(A) +̇ (A −̇ ψ↓

σψ
↑
σ(A)) = A, A ∈ Vσ. (6.70)

This equation is referred to as the perfect reconstruction condition. Let A be a signal in a

given multiscale space Vσ0 , where σ0 ∈ ZZ. The pyramid transform {D0, D1, . . . , Dm−1, Am}
of A is given by the following recursion:

A→ {D0, A1} → {D0, D1, A2} → · · · → {D0, D1, . . . , Dm−1, Am}, (6.71)

for m ≥ 1, with  Aj+1 = ψ↑
σ0+j(Aj) ∈ Vσ0+j+1

Dj = Aj −̇ ψ↓
σ0+j(Aj+1) ∈ Yσ0+j

, (6.72)
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for j = 0, 1, . . . ,m − 1, where A0 = A ∈ Vσ0 . The basic signal Am is the coarsest scaled

version of the original signal A, whereas each detail signal Dj expresses the information

contained in Aj that is lost in the approximation ψ↓
σ0+jψ

↑
σ0+j(Aj), for j = 0, 1, . . . ,m− 1.

Due to the perfect reconstruction condition (6.70), the original signal A can be exactly

reconstructed from {D0, D1, . . . , Dm−1, Am}, by means of the inverse pyramid transform,

given by the backward recursion:

Aj = ψ↓
σ0+j(Aj+1) +̇ Dj , (6.73)

for j = 0, 1, . . . ,m − 1, with A = A0. The inverse pyramid transform propagates the

information from scale σ0 +m back to scale σ0, by adding, at each intermediate scale, the

corresponding detail signal; i.e., the information that had been missing at that scale.

The multiscale signal decomposition scheme discussed above has obvious applications

in image coding for image compression or progressive transmission. The basic signal cor-

responds to the information that needs to be preserved, or transmitted first, whereas the

detail signals correspond to the information that can be either discarded, quantized, or

transmitted at later successive times. Usually, the detail signals at lower scales (lower

indices) correspond to information that can be severely quantized or transmitted last.

We now present an interesting example of multiscale signal decomposition scheme based

on the σ-reconstruction operators of a discrete multiscale connectivity. Let L be a lattice

sup-generated by S, furnished with a discrete multiscale connectivity system (ϕ,C). Let

the multiscale spaces {Vσ | σ ∈ ZZ} be given by

Vσ = Inv(ρσ(· | R)), σ ∈ ZZ, (6.74)

where {ρσ | σ ∈ ZZ} is the family of σ-reconstruction operators associated with (ϕ,C). For

reasons that will become clear later, the fixed marker R ∈ L is called the root marker. It is

easy to see that the nesting condition Vσ ⊆ Vτ , if σ ≥ τ , is satisfied, due to the fact that

{ρσ(· |M) | σ ∈ ZZ} constitutes a granulometry on L (see Theorem 6.2.12).

In the case of an infinite ∨-distributive lattice, we have the following characterization of

the multiscale spaces {Vσ | σ ∈ ZZ}.

6.5.1 Proposition. Let L be an infinite ∨-distributive lattice. For each σ ∈ ZZ, we have

that A ∈ Vσ if and only if C ∧R �= O, for all C �σ A. �
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Proof. “⇒”: Given σ ∈ ZZ, suppose that there is C0 �σ A such that C0 ∧ R = O. It

would follow, by the infinite ∨-distributivity of L, that C0 = C0 ∧ A = C0 ∧ ρσ(A | R) =

C0 ∧∨{C | C �σ A,C ∧R �= O} =
∨{C0 ∧C | C �σ A, C ∧R �= O} =

∨
O = O, which is

a contradiction.

“⇐”: Given σ ∈ ZZ, if C∧R �= O, for all C�σA, then ρσ(A | R) =
∨{C | C�σA,C∧R �=

O} =
∨{C | C �σ A} = A⇒ A ∈ Vσ, for σ ∈ ZZ. Q.E.D.

In other words, in the case of infinite ∨-distributive lattices, we have that A ∈ Vσ if and

only if all σ-connected components of A are marked by the root marker R.

Consider now analysis and synthesis operators given by:

ψ↑
σ = ρσ+1(· | R) and ψ↓

σ = id, σ ∈ ZZ. (6.75)

It is easy to see that, in this case, the pyramid condition ψ↑
σψ

↓
σ = id on Vσ+1 is satisfied:

ψ↑
σψ

↓
σ = ψ↑

σ = ρσ+1(· | R), and ρσ+1(· | R) coincides with the identity operator on Vσ+1 =

Inv(ρσ+1(· | R)), since ρσ+1(· | R) is idempotent, for σ ∈ ZZ.

Now, assume that there exist subtraction and addition operations −̇, +̇ defined on L.

In this case, all difference spaces coincide with L. Given σ0 ∈ ZZ and an arbitrary A ∈ L,

we have that A0 = ρσ0(A | R) ∈ Vσ0 , so that we can apply the pyramid transform, given

by (6.71) and (6.72), to A0. We therefore introduce an extra level “−1” to the pyramid

transform to get:

A→ {D−1, A0} → {D−1, D0, A1} → · · · → {D−1, D0, . . . , Dm−1, Am}, (6.76)

for m ≥ 0, with  Aj+1 = ρσ0+j+1(Aj | R) ∈ Vσ0+j+1

Dj = Aj −̇ Aj+1 ∈ L
, (6.77)

for j = −1, 0, . . . ,m− 1, where A−1 = A. Under the additional condition

ρσ0(A | R) +̇ (A −̇ ρσ0(A | R)) = A, A ∈ L, (6.78)

perfect reconstruction is possible, by means of the inverse pyramid transform:

A = Am +̇
m∑
j=−1

Dj , (6.79)

where the summation refers to the addition +̇.
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Figure 6.7: Two levels of a pyramid decomposition scheme based on the discrete dilation-
pyramid multiscale connectivity of Example 6.3.15.

We remark here that the previous multiscale signal decomposition scheme is an “adjunc-

tional pyramid,” in the sense of [27]. The proposed scheme is object-based, since it does not

work at the pixel level, but at the level of the connected components of an object at various

scales. Note also that this scheme depends on the particular root marker R. The term

“root marker” comes from the fact that the (σ0 +m)-connected components of the original

image A that are marked by R are present in all scaled signals {Aj | j = −1, 0, . . . ,m} of

the pyramid decomposition, which includes the basic signal Am. Therefore, the root marker

should be selected so as to preserve important objects in the image that should never go

into the detail signals.

Fig. 6.7 depicts an example of the proposed multiscale signal decomposition scheme,

where L = P(E), E is a square subset of IR2, furnished with the Euclidean topology,

the addition and subtraction operations are given by union and set difference, respectively

(note that the perfect reconstruction condition (6.78) is satisfied in this case) and the dis-

crete dilation-pyramid multiscale connectivity of Example 6.3.15 is considered, with the

basic structuring element being a Euclidean disk. Two levels of decomposition are consid-
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original image root marker

D−1 D4 D5 D6

D7 D8 D9 A11

Figure 6.8: Pyramid decomposition of a real discrete image based on the discrete dilation-
pyramid multiscale connectivity of Example 6.3.15.

ered; i.e., m = 1. Note that components marked by the root marker do not go into the detail

images. Note also that the original image is recovered by the inverse pyramid transform:

A = A1 ∪D−1 ∪D0.

Fig. 6.8 depicts an example that involves a real discrete image. Here, L = P(E), where

E is a square subset of ZZ2, the addition and subtraction operations are given by union

and set difference, respectively (as in the previous example, the perfect reconstruction

condition (6.78) is satisfied) and the discrete dilation-pyramid multiscale connectivity of

Example 6.3.15 is considered, where the base connectivity is given by 4-adjacency connec-

tivity and the basic structuring element is the 3 × 3 cross. Note that the σ-reconstructions

needed to compute the pyramid decomposition can be implemented by means of (6.36). In

this example, σ0 = −12 (this is the smallest scale that generates a nonzero initial detail

image D−1), and twelve levels of the decomposition are considered; i.e., m = 11. The detail
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images D0, D1, D2, D3, and D10 are zero, and are therefore not shown. Note that the

low-index detail images contain outliers, with respect to the objects selected by the root

marker. In a sense, this agrees with an earlier remark that the detail images at lower scales

correspond to less relevant information. Note that the original image is recovered by the

inverse pyramid transform; i.e., by union of the basic and detail images shown.

6.5.2 Hierarchical Segmentation and Hierarchical Clustering

The concept of hierarchical segmentation is of fundamental importance in multiscale

applications, such as adaptive bit-rate object-based coding of still images and image se-

quences [72]. In these applications, it is desirable to have several levels of segmentation at

various scales, so that the amount of compression (bit-rate) can be adjusted to meet varying

transmission/storage requirements.

On the other hand, hierarchical clustering is a technique used to group together similar

objects in a hierarchical fashion, with applications in unsupervised classification algorithms,

where the number, or the statistical distribution, of classes is not known a priori [23, 36].

A good analogy is provided by the field of biological taxonomy, where species are grouped

into genera, genera into families, families into orders, and so on. For this reason, hierarchi-

cal clustering is part of the field of “numerical taxonomy” [84]. Hierarchical clustering, and

clustering in general, is done by partitioning a feature space, in which each object is repre-

sented by a point. The availability of several levels of clustering in hierarchical clustering

algorithms is often helpful in revealing the true structure of the data; e.g., the number of

classes that best represent the organization of the data.

In this dissertation, we restrict our attention to nested hierarchical segmentation and

nested hierarchical clustering, meaning that the several levels of segmentation or clustering

must be ordered in a nested sequence, from coarse to fine. These notions of hierarchical

segmentation and hierarchical clustering can be formalized by using the concept of a hier-

archical partition, defined next. Recall from Section 4.1.2 the definition of a partition, and

the definitions of partial order 2 and infimum 3 in the lattice of partitions.

6.5.2 Definition. Let L be a lattice with sup-generating family S. A hierarchical partition

of an element A ∈ L is a mapping pA: IR × S(A) → L, such that:

(i) pA(σ, ·) is a partition of A, for each σ ∈ IR,

(ii) pA(σ, ·) 2 pA(τ, ·), if σ ≥ τ .
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Each pA(σ, x) is called a σ-zone of the hierarchical partition pA of A. We say that pA is

connected (with respect to a given multiscale connectivity system (ϕ,C) on L) if pA(σ, x) ∈
C(σ), for σ ∈ IR and x ∈ S(A). Moreover, we say that pA is coercive if it satisfies the

semi-continuity property pA(σ, ·) = 3 τ<σ pA(τ, ·), for each σ ∈ IR. "

The partitions pA(σ, ·) are said to be the σ-levels or the σ-partitions of pA, for σ ∈ IR.

The σ-partition pA(σ, ·) corresponds to the partition of A at scale σ. The nesting prop-

erty (ii) of Definition 6.5.2 requires the σ-partitions to be increasingly finer or nested. The

coercivity property implies that the σ-partitions are nested tightly; i.e., for each σ ∈ IR,

pA(σ, ·) is the coarsest partition of A that is finer than all partitions pA(τ, ·), for τ < σ.

Coercivity is not a fundamental property of a hierarchical partition; in most applications,

such as (nested) hierarchical segmentation and (nested) hierarchical clustering, nesting of

the partitions is all that is required.

Next, we show that a σ-zone of a hierarchical partition equals the supremum of all

τ -zones it majorates, for given τ ≥ σ. This reflects the intuitive idea that, as one goes in

the direction of lower scales, the partitions get increasingly coarser through “merging” of

zones at previous levels. The following result is similar to the Lemma in [79, see p. 240];

however, the proof that we give below is new.

6.5.3 Proposition. Let L be a lattice with sup-generating family S, and let pA be a

hierarchical partition of A ∈ L. For each x ∈ S(A) and τ ≥ σ,

pA(σ, x) =
∨

y∈S(A)

{pA(τ, y) | pA(τ, y) ≤ pA(σ, x)}. (6.80)

�

Proof. The proof of the inequality ≥ is trivial. We show the converse inequality. First, note

that, if y ∈ S(A) but y �≤ pA(σ, x), then pA(τ, y) ≤ pA(σ, y) and pA(σ, y) ∧ pA(σ, x) = O,

which imply that pA(τ, y)∧pA(σ, x) = O ⇒ pA(τ, y) �≤ pA(σ, x). Therefore, the right-hand

side of (6.80) reduces to
∨
y≤pA(σ,x){pA(τ, y) | pA(τ, y) ≤ pA(σ, x)}. Let y ≤ pA(σ, x). We

have that y ≤ pA(τ, y) ≤ pA(σ, y), so that pA(σ, y) ∧ pA(σ, x) ≥ y �= O ⇒ pA(σ, y) =

pA(σ, x); i.e., pA(τ, y) ≤ pA(σ, x). Hence, pA(σ, x) =
∨
y≤pA(σ,x) y ≤ ∨y≤pA(σ,x) pA(τ, y) =∨

y≤pA(σ,x){pA(τ, y) | pA(τ, y) ≤ pA(σ, x)}, as required. Q.E.D.

In Proposition 4.1.8, it was shown that the connected components of A ∈ L provide a

connected partition A, which is the coarsest possible partition of A. We now provide the

multiscale extension of that result. First, we need the following definition.
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6.5.4 Definition. Given two hierarchical partitions pA and p′
A, we say that pA is finer

than p′
A if pA(σ, ·) 2 p′

A(σ, ·), for each σ ∈ IR; i.e., each σ-partition of pA is finer than the

corresponding σ-partition of p′
A. In this case, we also say that p′

A is coarser than pA. "

We remark here that this defines a partial order relation on the set of all hierarchical

partitions of A, which becomes a lattice with infimum and supremum defined pointwise.

We have the following proposition.

6.5.5 Proposition. Let L be a lattice with sup-generating family S, furnished with a

multiscale connectivity system (ϕ,C), and let {γσ,x | σ ∈ IR, x ∈ S} be the σ-connectivity

openings associated with (ϕ,C).

(a) For A ∈ L, the mapping cA: IR × S(A) → L, given by

cA(σ, x) = γσ,x(A), σ ∈ IR, x ∈ S(A), (6.81)

is a connected hierarchical partition of A. Moreover, it is the coarsest possible con-

nected hierarchical partition of A.

(b) If the σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S} are ↓-continuous, then cA is

coercive. �

Proof. (a): It is clear that cA(σ, ·) is a partition of A and that cA(σ, x) ∈ C(σ), for

σ ∈ IR, x ∈ S(A). Also, the nesting property cA(σ, ·) 2 cA(τ, ·), if σ ≥ τ , follows from prop-

erty (ii) of Theorem 6.1.13. Finally, that cA is the coarsest possible connected hierarchical

partition of A follows directly from Proposition 4.1.8.

(b): This follows directly from Proposition 6.1.14. Q.E.D.

The hierarchical partition cA is referred to as the hierarchical partition of connected

components (HPCC) of A. Note that the dilation-pyramid multiscale connectivity of Ex-

ample 6.3.11 and the opening-pyramid multiscale connectivity of Example 6.3.29 produce

coercive HPCCs, since the σ-connectivity openings associated with these multiscale connec-

tivities are ↓-continuous.

Fig. 6.9 depicts an image and a few σ-partitions of its HPCC. In this example, L = F(E),

where E is a square subset of IR2, furnished with the Euclidean topology, and the dilation-

pyramid multiscale connectivity of Example 6.3.11 is considered, with the basic structuring

element being a Euclidean disk. Notice that, as scale increases, the σ-partitions become

increasingly finer; i.e., the nesting property is satisfied.
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Figure 6.9: (a) Original image, and (b) three σ-partitions of its HPCC, according to the
dilation-pyramid multiscale connectivity of Example 6.3.11. Here, σ1 ≤ σ2 ≤ σ3. Note that
the nesting property is satisfied.

Another interesting example of hierarchical partition derived from a multiscale connec-

tivity is given next. Recall from Section 5.2 that, given a function f ∈ Fun(E, T ), we can

define a mapping F : T → P(E) given by

F (t) = {x ∈ E | f(x) = t}, t ∈ T . (6.82)

We have the following definition.

6.5.6 Definition. Let L = P(E), with the points as sup-generators, furnished with a mul-

tiscale connectivity system (ϕ,C), and let {γσ,x | σ ∈ IR, x ∈ S} be the σ-connectivity open-

ings associated with (ϕ,C). For an image f ∈ Fun(E, T ), the mapping zf : IR × S → P(E),

given by

zf (σ, x) = γx(F (f(x))), σ ∈ IR, x ∈ S, (6.83)
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is a connected hierarchical partition of the domain of definition E, called the hierarchical

partition of flat zones of f . "

Clearly, if the σ-connectivity openings {γσ,x | σ ∈ IR, x ∈ S} are ↓-continuous, then

zf is coercive. The hierarchical partition of flat zones can be applied in the hierarchical

segmentation of grayscale as well as multispectral images.

The discretization of the previous concepts is straightforward. The discrete counterpart

of Definition 6.5.2 is the following.

6.5.7 Definition. Let L be a lattice with sup-generating family S. A discrete hierarchical

partition of an element A ∈ L is a mapping pA: ZZ × S(A) → L, such that:

(i) pA(σ, ·) is a partition of A, for each σ ∈ ZZ,

(ii) pA(σ, ·) 2 pA(τ, ·), if σ ≥ τ .

Each pA(σ, x) is called a σ-zone of the discrete hierarchical partition pA of A. We say

that pA is connected (with respect to a given discrete multiscale connectivity system (ϕ,C)

on L) if pA(σ, x) ∈ C(σ), for σ ∈ ZZ and x ∈ S(A). "

As before, the partitions pA(σ, ·) are said to be the σ-levels or the σ-partitions of pA,

for σ ∈ ZZ. There is no discrete counterpart to the coercivity property; only the nesting

property is retained in the discrete case. The discrete version of Proposition 6.5.3 is trivial.

Below, we provide the discrete version of Proposition 6.5.5.

6.5.8 Proposition. Let L be a lattice with sup-generating family S, furnished with a

discrete multiscale connectivity system (ϕ,C), and let {γσ,x | σ ∈ ZZ, x ∈ S} be the σ-

connectivity openings associated with (ϕ,C). For A ∈ L, the mapping cA: ZZ ×S(A) → L,

given by

cA(σ, x) = γσ,x(A), σ ∈ ZZ, x ∈ S(A), (6.84)

is a connected discrete hierarchical partition of A. Moreover, it is the coarsest possible

connected discrete hierarchical partition of A. �

The discrete hierarchical partition cA is also referred to as the discrete HPCC of A.

Fig. 6.10 depicts an application of the HPCC in hierarchical segmentation.

A discrete image is depicted in (a), whereas three σ-partitions of its HPCC are depicted

in (b). Different colors indicate different σ-zones. In this example, L = P(E), where E is
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Figure 6.10: (a) Original discrete image, and (b) three σ-partitions of its HPCC, according
to the discrete dilation-pyramid multiscale connectivity of Example 6.3.15. Here, σ1 =
−8, σ2 = −5, σ3 = −2. Note that the nesting property is satisfied.

a square subset of ZZ2, and the discrete dilation-pyramid multiscale connectivity of Exam-

ple 6.3.15 is considered, where the base connectivity is given by 4-adjacency connectivity

and the basic structuring element is the 3 × 3 cross. Notice that, due to the nesting prop-

erty, as scale increases, the σ-partitions produce segmentations with more objects; i.e., some

objects from previous scales are “broken apart.”

On the other hand, Fig. 6.11 depicts an application of the HPCC in hierarchical cluster-

ing. In (a), a 2-D discrete feature space containing simulated data is depicted, whereas three

σ-partitions of its HPCC are depicted in (b). The σ-zones, indicated with different colors,

correspond to different classes detected at scale σ. A few σ-zones that contain only a small

number of data points, which correspond to outliers, are not shown. Note that the classes

exhibit elongated, linear distributions. In this example, L = P(E), where E is a square

subset of ZZ2, and the discrete dilation-pyramid multiscale connectivity of Example 6.3.15 is

considered, where the base connectivity is given by 4-adjacency connectivity and the struc-
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Figure 6.11: (a) Original discrete image, and (b) three σ-partitions of the HPCC, according
to the discrete dilation-pyramid multiscale connectivity of Example 6.3.15; the structuring
element used is a thin rectangle oriented along the direction of the clusters. Here, σ1 = −1,
σ2 = −2, and σ3 = −3. The classification that corresponds to the σ2-partition is particularly
hard to obtain using conventional clustering methods.

turing element is a thin rectangle oriented along the direction of the clusters (this reflects

prior knowledge about the problem). At large scale, three classes are detected, whereas

at low scale, the entire data are considered to constitute a single class. The classification

that corresponds to the σ2-partition is particularly hard to obtain using minimum-square

distance schemes and thus implicitly assume hyperellipsoidal clusters [23, 62]. We remark

that the proposed hierarchical clustering algorithm, based on HPCCs, belongs to the class

of so-called scale-space clustering algorithms [17, 46, 62, 90, 92]. These hierarchical clustering

techniques have been recently proposed and share the common feature of explicitly using

scale as the free parameter governing the construction of the clustering hierarchy.
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Finally, we remark that the discretization of the notion of hierarchical partition of flat

zones is obvious, and thus it will not be repeated here. Note that, in this case, the function

lattice Fun(E, T ) can still be arbitrary; only the set of scales is discrete.

6.5.3 Multiscale Features

Image features are fundamental constituents of pattern recognition algorithms for image

analysis. The performance of such algorithms is directly related to the choice of robust fea-

tures. In this section, we propose multiscale image analysis features, namely, the clustering

curve and the clustering spectrum, which measure the multiscale connectivity properties of

a given object. We remark that, in Mathematical Morphology, a useful and well-known

example of multiscale image analysis feature is the pattern spectrum [55]. The clustering

spectrum is distinct from the pattern spectrum, since the latter is based on measurements

made on a granulometric distribution, whereas the former is based on measurements made

on a hierarchical partition. Nevertheless, clustering spectra and pattern spectra are similar

tools and share similar properties.

A feature on a lattice L is a mapping s: L → IR. In practice, a feature measures some

property of elements of L. For instance, a connectivity measure on L is a feature that

measures the degree of connectivity of elements of L. Another example is the area feature

on P(IR2), given by s(A) = λ(A), the 2-D Lebesgue measure of A [7], if A is measurable,

or s(A) = 0, otherwise, which measures the “area” of A (similarly, one can define a length

feature on P(IR), a volume feature on P(IR3), as well as higher-dimensional analogs on

P(IRn), for n ≥ 4). Yet another example is the discrete area feature on P(ZZ2), given by

s(A) = Card(A), the cardinality of A, which measures the “discrete area” of A (accordingly,

one can define a discrete length feature on P(ZZ), a discrete volume feature on P(ZZ3), as

well as higher-dimensional analogs on P(ZZn), for n ≥ 4). Any remarks made below about

the area feature and its discrete counterpart also applies to length, volume, and analogous

higher-dimensional features, as well as to their discrete counterparts, respectively.

A feature s on L is monotone if it is either increasing or decreasing, with respect to the

partial orders of L and IR. Note that, in general, connectivity measures are not monotone.

The area feature is not monotone either, due to the existence of nonmeasurable sets in IR2.

On the other hand, the discrete area feature is increasing. A monotone feature s on L is said

to be lattice upper semi-continuous (l.u.s.c.) if, for any totally ordered subset Q ⊆ L, one
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has that s(
∧Q) =

∧
A∈Q s(A), if s is increasing, or s(

∧Q) =
∨
A∈Q s(A), if s is decreasing.

A lattice lower semi-continuous (l.l.s.c.) feature is defined analogously. It is possible to

show that the discrete area feature is l.l.s.c., but not l.u.s.c. For a counterexample that

shows that the area feature is not l.u.s.c., let Q = {[n,∞) × [n,∞) | n ∈ ZZ}. Clearly,

s(A) = ∞, for all A ∈ Q, so that
∧
A∈Q s(A) = ∞ �= s(⋂Q) = s(∅) = 0. We remark that

any increasing feature that takes on discrete values in IR � {−∞} (resp. IR � {∞}) is l.l.s.c.

(resp. l.u.s.c.); a similar statement holds for decreasing features.

Next, we define the notion of a partition feature. Given a lattice L and A ∈ L, recall

from Section 4.1.2 that the set PA of all partitions of A is a lattice.

6.5.9 Definition. Given a lattice L and A ∈ L, a partition feature is a feature on the

lattice of partitions PA. "

All definitions regarding features apply to partition features as well. For instance, a

partition feature ν on PA is increasing if pA 2 p′A ⇒ ν(pA) ≤ ν(p′A), whereas it is decreasing

if pA 2 p′A ⇒ ν(pA) ≥ ν(p′A). A monotone partition feature ν is l.u.s.c. if, for any totally

ordered subset Q ⊆ PA, we have that ν(3Q) =
∧
pA∈Q ν(pA), if ν is increasing, or ν(3Q) =∨

pA∈Q ν(pA), if ν is decreasing. An l.l.s.c. partition feature satisfies analogous properties.

Below, we give a few examples of partition features.

6.5.10 Example.

(a) Let L be a lattice. Given A ∈ L, a useful partition feature on PA is given by:

µ(pA) = cardinality of the set of zones of pA, (6.85)

for pA ∈ PA. We refer to µ as the counting feature. This partition feature is clearly

decreasing.

(b) Let s be a feature on a lattice L. Given A ∈ L, consider the following three partition

features on PA:

ν avg(pA) =

 s(A)/µ(A), if s(A) or µ(A) is finite

0 otherwise
, (6.86)

ν inf(pA) =
∧

x∈S(A)

s(pA(x)), (6.87)

ν sup(pA) =
∨

x∈S(A)

s(pA(x)), (6.88)
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for pA ∈ PA. The partition feature ν avg is always increasing, whereas ν inf and ν sup

are increasing or decreasing if the feature s has these properties, respectively. ♦

As a concrete instance of Example 6.5.10(b), consider the case when s is the area feature

on P(IR2). In this case, νavg is an increasing feature that gives the “average” zone area of a

partition (if A and all zones are measurable), ν inf gives the “smallest” zone area, and ν sup

gives the “largest” zone area; ν inf and ν sup are neither increasing or decreasing. Similar

remarks apply when s is the discrete area feature on P(ZZ2). However, unlike the previous

case, the discrete area feature is increasing. Hence, in addition to ν avg, we have that ν inf

and ν sup are increasing partition features as well.

We now have the following result.

6.5.11 Proposition. Let s be a feature on a lattice L, and let A ∈ L.

(a) The counting feature µ, defined by (6.85), is l.u.s.c.

(b) Assume that s is finite. The partition feature ν avg, defined by (6.86), is l.u.s.c.

(c) Assume that s is increasing. If s is l.u.s.c., the partition feature ν inf , defined by (6.87),

is l.u.s.c. as well.

(d) Assume that s is decreasing. If s is l.l.s.c., the partition feature ν sup, defined by (6.88),

is l.l.s.c. as well. �

Proof. (a): Consider a totally ordered subset Q ⊆ PA. Note that, for all pA ∈ Q, we

have that 3Q 2 pA ⇒ µ(3Q) ≥ µ(pA), since µ is decreasing. Hence, if
∨
pA∈Q µ(pA) = ∞,

then µ(3Q) ≥ ∨pA∈Q µ(pA) = ∞ ⇒ µ(3Q) =
∨
pA∈Q µ(pA) = ∞, and we are done. Thus,

assume that m =
∨
pA∈Q µ(pA) is finite. In this case, we must have m = µ(p0A), for some

p0A ∈ Q, otherwisem−1 would be an upper bound of the set {µ(pA) | pA ∈ Q}, contradicting

the fact that m is its supremum. But, since Q is a totally ordered subset, this means that

p0A 2 pA, for all pA ∈ Q; i.e., p0A = 3Q. Hence, µ(3Q) = µ(p0A) = m =
∨
pA∈Q µ(pA), as

required.

(b): This is an easy consequence of (6.86) and part (a).

(c): Consider a totally ordered subset Q ⊆ PA. Note that (3Q)(x) =
∧
pA∈Q pA(x),

for x ∈ S(A). Hence, ν inf(3Q) =
∧
x∈S(A) s(

∧
pA∈Q pA(x)) =

∧
x∈S(A)

∧
pA∈Q s(pA(x)) =∧

pA∈Q
∧
x∈S(A) s(pA(x)) =

∧
pA∈Q ν inf(pA), as required.

(d): The proof is completely analogous to the proof of part (c). Q.E.D.
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We remark that the result in part (a) of the previous proposition can be easily gener-

alized in the following way. Any decreasing partition feature that takes on discrete values

in IR � {−∞} (resp. IR � {∞}) is l.u.s.c. (resp. l.l.s.c.); an analogous statement holds for

increasing partition features. Note that the counting feature (or any decreasing partition

feature that takes on discrete values, including ∞) is not l.l.s.c. However, one can show

that, for a totally ordered subset Q of PA, we have that µ(4Q) =
∧{µ(pA) | pA ∈ Q},

provided that µ(pA) <∞, for some pA ∈ Q (the proof of this fact is similar to the proof of

part (a) of Proposition 6.5.11). An analogous statement applies to an increasing partition

feature that takes on discrete values, including −∞.

Next, we define the concept of a clustering curve.

6.5.12 Definition. Let L be a lattice with sup-generating family S, furnished with a mul-

tiscale connectivity system (ϕ,C). Given A ∈ L, let ν be a partition feature on PA. The

clustering curve of A with respect to ν is a function XA: IR → IR, given by:

XA(σ) = ν(cA(σ, ·)), σ ∈ IR, (6.89)

where cA is the HPCC of A, according to (ϕ,C). "

Therefore, XA indicates how the property measured by the underlying partition feature

on the σ-connected components of A varies with scale. For instance, if ν = µ, the counting

feature defined in (6.85), then XA gives the number of σ-grains of A as a function of scale

(in the binary case — e.g., when L = P(E) — other useful cases include XAc , which gives

the variation of the number of σ-pores of A, and XA − XAc , which gives the variation of

the σ-genus of A — i.e., the difference between the number of σ-grains and σ-pores). On

the other hand, if L = P(IR2) and ν = ν avg, the partition feature defined in (6.86), with s

being the area feature, then XA gives the average area of the σ-connected components as

a function of scale. Similar remarks apply if ν is one of the partition features defined in

(6.87) or (6.88), or any other partition feature. The term “clustering curve” comes from

the nesting property of the HPCC, which implies that the σ-connected components of A

cluster together, if scale decreases, or clusters of σ-connected components are broken apart,

if scale increases. This behavior is captured by the graph of the clustering curve XA.

If ν is an arbitrary partition feature, little can be said about the behavior of the clustering

curve XA. However, in the case of a monotone partition feature, XA can be characterized

as follows.
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6.5.13 Proposition. Let L be a lattice, furnished with a multiscale connectivity sys-

tem (ϕ,C). Let A ∈ L and ν be a monotone partition feature on PA. The clustering

curve XA: IR → IR, defined by (6.89), satisfies the following three properties:

(a) XA is monotone; it is increasing (resp. decreasing) if ν is decreasing (resp. increasing).

(b) XA is continuous, except for a countable number of jump discontinuities.

(c) If the HPCC cA is coercive and ν is l.u.s.c., then XA is left-continuous at the jumps. �

Proof. (a): From the nesting property of hierarchical partitions, we have that pA(σ, ·) 2
pA(τ, ·), if σ ≥ τ . If ν is increasing, then XA(σ) = ν(pA(σ, ·)) ≤ ν(pA(τ, ·)) = XA(τ), if

σ ≥ τ ; i.e., XA is decreasing. The opposite holds if ν is decreasing. In either case, XA is a

monotone function.

(b): From part (a), XA is a monotone function. If XA is increasing (resp. decreas-

ing), the left and right lateral limits at a point σ ∈ IR are given, respectively, by XA(σ−) =

limτ↑σXA(τ) =
∨
τ<σXA(τ) (resp.

∧
τ>σXA(τ)) andXA(σ+) = limτ↓σXA(τ) =

∧
τ>σXA(τ)

(resp.
∨
τ<σXA(τ)). We conclude that the lateral limits always exist at all points σ ∈ IR.

Therefore, any discontinuity of XA must be a jump discontinuity; i.e., a point σ ∈ IR at

which the lateral limits are different, XA(σ−) �= XA(σ+). Let D be the set of such discon-

tinuities. Since XA is monotone, each σ ∈ D is associated with a distinct open interval Iσ

with endpoints at XA(σ−), XA(σ+); moreover, these intervals are disjoint. Therefore, each

interval contains a rational number that is not contained in the other intervals. This means

that one can construct an injective function from D into Q, the set of all rational numbers.

But Q is a countable set, so that D must be countable as well.

(c): We show that XA is left-continuous at any given σ ∈ IR. Since cA is coercive,

we have cA(σ, ·) = 3τ<σcA(τ, ·). Suppose that ν is decreasing, so that XA is increasing.

Since ν is l.u.s.c., we have XA(σ) = ν(cA(σ, ·)) = ν(3τ<σcA(τ, ·)) =
∨
τ<σ ν(cA(τ, ·)) =∨

τ<σXA(τ) = limτ↑σXA(τ) = XA(σ−), which shows the desired result. The case in which

ν is increasing is analogous. Q.E.D.

As we remarked in Section 6.5.2, the dilation-pyramid multiscale connectivity of Exam-

ple 6.3.11 and the opening-pyramid multiscale connectivity of Example 6.3.29 produce coer-

cive HPCCs. In this case, according to part (c) of the previous proposition, left-continuity

of XA depends only on whether ν is l.u.s.c. We also remark that the definition of XA
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in (6.89) and Proposition 6.5.13 are still valid if cA is replaced by any given hierarchi-

cal partition pA, even though one loses the interpretation of measuring the clustering of

σ-connected components.

Variation inXA indicates how the property measured by the underlying partition feature

changes as the σ-connected components of A cluster together or break apart, due to change

in scale. It is therefore natural to measure this variation in terms of (the absolute value of)

a derivative. This leads to the definition of the clustering spectrum.

6.5.14 Definition. Let L be a lattice with sup-generating family S, furnished with a mul-

tiscale connectivity system (ϕ,C). Given A ∈ L, let ν be a partition feature on PA. The

clustering spectrum of A with respect to ν is a function YA: IR → IR, given by:

YA(σ) =
∣∣∣∣ ddσXA(σ)

∣∣∣∣ = ∣∣∣∣ ddσν(cA(σ, ·))
∣∣∣∣ , σ ∈ IR, (6.90)

where XA is the clustering curve of A, defined in (6.89). "

It is understood that, at a point σ where XA has a jump discontinuity, YA(σ) will

be assigned an impulse of magnitude equal to the jump. The clustering spectrum YA(σ)

summarizes the variation in the clustering structure of an object A as a function of scale σ.

Note that, when XA is increasing, the absolute value is redundant in (6.90).

Fig. 6.12 depicts two images as well as the clustering curve and the clustering spectrum

associated with each of them. In this example, L = F(E), where E is a square subset of IR2,

furnished with the Euclidean topology, and the dilation-pyramid multiscale connectivity of

Example 6.3.11 is considered, with the basic structuring element being a Euclidean disk.

The partition feature considered in this example is the counting feature µ, defined in (6.85).

Since, in this case, the HPCCs are coercive and µ is l.u.s.c. (see Proposition 6.5.11), the

clustering curve XA is increasing and has a countable number of jump discontinuities, at

which it is left-continuous (see Proposition 6.5.13). Moreover, XA is piecewise constant,

since µ takes on discrete values. Hence, XA is a staircase-like function, and the clustering

spectrum YA is thus comprised of impulses, located at the jumps of XA. Note also that

YA is zero over all positive scales, due to the “negative nature” of the dilation-pyramid

multiscale connectivity. The clustering curves and the clustering spectra of the images in

this example are very distinct, clearly indicating differences in the organization of clusters.

In particular, for image A1, the presence of components of the clustering spectrum away
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Figure 6.12: Clustering curves and spectra associated with two distinct images.

from the origin indicates existence of isolated and clearly defined clusters, as opposed to

the case of image A2.

By using the notion of discrete HPCC, we define below the concept of a discrete clus-

tering curve.

6.5.15 Definition. Let L be a lattice with sup-generating family S, furnished with a dis-

crete multiscale connectivity system (ϕ,C). Given A ∈ L, let ν be a partition feature

on PA. The discrete clustering curve of A with respect to ν is a function XA: ZZ → IR,

given by:

XA(σ) = ν(cA(σ, ·)), σ ∈ ZZ, (6.91)

where cA is the discrete HPCC of A, according to (ϕ,C). "

Generally, the same remarks made previously on clustering curves apply to the discrete

case as well. The discrete counterpart of the clustering spectrum is given by (the absolute

value of) a “discrete derivative.” We have the following definition.

6.5.16 Definition. Let L be a lattice with sup-generating family S, furnished with a dis-

crete multiscale connectivity system (ϕ,C). Given A ∈ L, let ν be a partition feature
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on PA. The discrete clustering spectrum of A with respect to ν is a function YA: ZZ → IR,

given by:

YA(σ) = |XA(σ) −XA(σ − 1)| = | ν(cA(σ, ·)) − ν(cA(σ − 1, ·)) | , σ ∈ ZZ, (6.92)

where XA is the discrete clustering curve of A, defined in (6.91). "

The discrete clustering spectrum YA(σ) summarizes variation in the clustering structure

of an object A as a function of scale σ. Note that, when XA is increasing, the absolute

value is redundant in (6.92).

Fig. 6.13 depicts two real discrete images and their discrete clustering curves and spectra

corresponding to four different partition features: the counting feature µ, the average area

feature ν avg, the least area feature ν inf , and the greatest area feature ν sup. In this example,

L = P(E), where E is a square subset of ZZ2, and the discrete dilation-pyramid multiscale

connectivity of Example 6.3.15 is considered, where the base connectivity is given by 4-

adjacency connectivity and the basic structuring element is a 3×3 cross. Only the negative

scales are displayed (as in the previous example, the clustering spectrum is zero over the

positive scales). In particular, the origin is located on the right hand side of the plots. Note

that the clustering curves associated with the counting feature are increasing, whereas the

clustering curves associated with all other partition features are decreasing, as expected.

Note also that the blood cell image in (a) contains more clearly defined cell clusters than the

bone marrow cell image in (b). Accordingly, the clustering spectra of the blood cell image

contain components, away from the origin, of larger magnitude than the corresponding

clustering spectra of the bone marrow cell image. Finally, we also observe that the least

area partition feature produces clustering curves and clustering spectra that contain less

information than the ones produced by the other partition features.

Another application of the clustering spectrum is depicted in Fig. 6.14. The objective

here is to detect directional clustering in an image. The simulated discrete image depicted

in Fig. 6.14 contains objects that form clusters in a particular direction (for instance, this

situation can happen in an aerial image of a highway, or a surveillance image of a production

line). In this example, L = P(E), where E is a square subset of ZZ2, and the discrete

dilation-pyramid multiscale connectivity of Example 6.3.15 is considered, where the base

connectivity is given by 4-adjacency connectivity. Two small rectangles are employed as

basic structuring elements; one is oriented along the direction of clustering, whereas the
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Figure 6.13: Clustering curves and spectra associated with two distinct images, according
to the discrete dilation-pyramid multiscale connectivity of Example 6.3.15: (a) blood cell
image, and (b) bone marrow cell image.
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Figure 6.14: Clustering curves and spectra associated with a binary image containing objects
clustered directionally, according to the discrete dilation-pyramid multiscale connectivity of
Example 6.3.15.

other is oriented perpendicular to it. Once again, only the negative scales are displayed,

so that the origin is located on the right hand side of the plots. The underlying partition

feature used is the counting feature. The presence of significant components in the first

clustering spectrum that are close to the origin indicate that the objects are clustered along

the direction of the first structuring element.

6.6 Multiscale Hyperconnectivity

In this section, we extend the concept of multiscale connectivity by introducing the

notion of multiscale hyperconnectivity. Like its single-scale counterpart, multiscale hyper-

connectivity allows for hyperconnected components that have nonzero infimum.
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We restrict ourselves to the discrete-scale case. Hence, the theory of multiscale hyper-

connectivity developed here is analogous to the theory of discrete multiscale connectivity.

For the most part, it is a trivial matter to extend the definitions and results given below to

the continuous-scale case.

In order to establish an axiomatization of multiscale hyperconnectivity, we introduce

the notion of an overlap measure for families in a lattice L.

6.6.1 Definition. Let L be a lattice. An overlap measure on L is a decreasing mapping

⊥: P(L) → ZZ, i.e.:

A ⊆ B ⇒ ⊥(A) ≥ ⊥(B). (6.93)
"

We interpret ⊥(A) as the extent to which the family A overlaps. Hence, A is said to be

fully overlapping if ⊥(A) = ∞, whereas it is said to be fully non-overlapping if ⊥(A) = −∞.

The condition expressed by (6.93) reflects the observation that the degree to which a family

overlaps cannot possibly be increased by adding more elements to the family.

We remark that overlap criteria, defined in Section 4.4, correspond to binary overlap

measures; e.g., an overlap measure that takes on values −∞ and ∞. In this sense, overlap

measures are multiscale extensions of overlap criteria. In addition, given an overlap measure

⊥ on L, one can define a family of overlap criteria {⊥σ: P(L) → {−∞,∞} | σ ∈ ZZ} on L,

given by

⊥σ(A) =

 ∞, if ⊥(A) ≥ σ
−∞, otherwise

. (6.94)

These are called the σ-overlap criteria associated with the overlap measure ⊥.

We now define the concept of a hyperconnectivity measure on a lattice L.

6.6.2 Definition. Let L be a lattice with sup-generating family S, furnished with an over-

lap measure ⊥. A function ϕh: L → ZZ is said to be a hyperconnectivity measure on L if:

(i) ϕh(O) = ϕh(x) = ∞, for x ∈ S,

(ii) for a family {Aα} in L, we have that ϕh(
∨
Aα) ≥ ⊥({Aα}) ∧ ∧ϕh(Aα). "

Given A ∈ L, the quantity ϕh(A) indicates the degree of hyperconnectivity of A. If

ϕh(A) = ∞, A is said to be fully hyperconnected, whereas if ϕh(A) = −∞, A is said to be

fully non-hyperconnected. Intermediate hyperconnectivity, or σ-hyperconnectivity, is defined
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by saying that A is σ-hyperconnected if ϕh(A) ≥ σ, for σ ∈ ZZ. Of course, if σ ≥ τ , then

σ-hyperconnectivity implies τ -hyperconnectivity.

Axiom (i) of Definition 6.6.2 requires the least element and the sup-generators to be fully

hyperconnected. On the other hand, axiom (ii) requires that the degree of hyperconnectivity

of the supremum of any family in L must always be greater than the degree of overlapping

of the family or the least degree of hyperconnectivity of the individual elements. This

implies that, in contrast to multiscale connectivities, the degree of hyperconnectivity of the

supremum of a family in L is allowed to be less than the least degree of hyperconnectivity

of the individual elements, as long as it is greater than the degree of overlapping of the

family. This affords extra flexibility to the multiscale hyperconnectivity framework.

Given a hyperconnectivity class H on L, furnished with an overlap criterion ⊥, we

can define a simple binary hyperconnectivity measure ϕH on L, by letting ϕH(A) = ∞, if

A ∈ H, and ϕH(A) = −∞, if A �∈ H, where the underlying overlap measure is given by the

mapping ⊥ itself. In other words, each A ∈ L is either fully hyperconnected, if A ∈ H, or

fully non-hyperconnected, if A �∈ H. Hence, hyperconnectivity classes lead to single-scale

hyperconnectivities, where the degree of hyperconnectivity is all-or-nothing; i.e., there is no

intermediate hyperconnectivity.

It is clear that hyperconnectivity measures generalize the notion of discrete connectivity

measures; a connectivity measure ϕ on L may be considered to be a hyperconnectivity

measure with respect to the “standard” overlap measure ⊥∧ given by

⊥∧ (A) =

 ∞, if
∧A �= O

−∞, otherwise
. (6.95)

We now define the concept of a hyperconnectivity pyramid on a lattice L.

6.6.3 Definition. Let L be a lattice with sup-generating family S, furnished with an over-

lap measure ⊥. A hyperconnectivity pyramid on L is a mapping H : ZZ → P(L) such that

(i) H(σ) is a hyperconnectivity class in L, according to the σ-overlap criterion ⊥σ, defined

by (6.94), for each σ ∈ ZZ.

(ii) H(σ) ⊆ H(τ), if σ ≥ τ . "

The hyperconnectivity classes H(σ) are referred to as the σ-levels or the

σ-hyperconnectivity classes associated with H, for σ ∈ ZZ. The σ-hyperconnectivity class
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H(σ) corresponds to hyperconnectivity at scale σ. For A ∈ L, if A is hyperconnected at all

scales, i.e., if A ∈ ⋂σ∈ZZ H(σ), A is said to be fully hyperconnected, whereas if A is not hy-

perconnected at any scale, i.e., if A �∈ ⋃σ∈ZZ H(σ), A is said to be fully non-hyperconnected.

In addition, A is said to be σ-hyperconnected if A ∈ H(σ), for σ ∈ ZZ. Of course, if σ ≥ τ ,
then σ-hyperconnectivity implies τ -hyperconnectivity (as expected, these definitions can be

shown to agree with the ones given earlier regarding hyperconnectivity measures).

Axiom (ii) of Definition 6.6.3 requires that the σ-levels of a hyperconnectivity pyramid

be nested, so that the criterion for hyperconnectivity is increasingly stricter as one goes up

the pyramid. In other words, less objects tend to be hyperconnected at large scales than at

small scales.

Given a hyperconnectivity class H on L, furnished with an overlap criterion ⊥, we can

define a simple hyperconnectivity pyramid H on L, by letting H(σ) = H, for all σ ∈ ZZ,

where the underlying overlap measure is given by the mapping ⊥ itself. In this case, each

A ∈ L is either fully hyperconnected, if A ∈ H, or fully non-hyperconnected, if A �∈ H. This

supports our earlier observation that hyperconnectivity classes correspond to single-scale

hyperconnectivities, where the hyperconnectivity is the same at all scales; i.e., there is no

intermediate hyperconnectivity.

Let L be a lattice, with a fixed sup-generating family S, furnished with an overlap

measure ⊥. Similarly to the multiscale connectivity case, it can be shown fairly easily

that the set MH(L,⊥) of all hyperconnectivity measures on L and the set YH(L,⊥) of all

hyperconnectivity pyramids on L are complete lattices, under the product partial order (the

infimum in those lattices is simply the pointwise infimum). Moreover, we have the following

result, which is the hyperconnectivity counterpart of Theorem 6.2.9.

6.6.4 Theorem. Let L be a lattice with sup-generating family S, furnished with an overlap

measure ⊥. The lattice MH(L,⊥) of hyperconnectivity measures on L is isomorphic to the

lattice YH(L,⊥) of hyperconnectivity pyramids on L. Moreover, the isomorphism ΓH from

MH(L,⊥) to YH(L,⊥) is given by

ΓH(ϕH)(σ) = {A ∈ L | ϕH(A) ≥ σ}, σ ∈ ZZ, (6.96)

with inverse Γ−1
H from YH(L,⊥) to MH(L,⊥) given by

Γ−1
H (H)(A) =

∨
{σ ∈ ZZ | A ∈ H(σ)}, A ∈ L. (6.97)

�
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The isomorphism between lattices MH(L,⊥) and YH(L,⊥) is of course a bijection; i.e.,

to each hyperconnectivity measure ϕH on L, according to the overlap measure ⊥, there is an

associated equivalent hyperconnectivity pyramid H on L, which consists of the σ-sections

of ϕH , also according to the overlap measure ⊥. Conversely, ϕH can be regenerated by

“stacking up” the σ-levels of H. Hence, a multiscale hyperconnectivity on L can be equiv-

alently specified by either method. Therefore, we say that L is furnished with a multiscale

hyperconnectivity system (ϕH ,H) ∈ MH(L,⊥) × YH(L,⊥), such that ϕH and H are equiv-

alent under the bijection given in Theorem 6.6.4. Note that all the definitions regarding

full hyperconnectivity, σ-hyperconnectivity and full non-hyperconnectivity, given earlier for

hyperconnectivity measures and hyperconnectivity pyramids, agree for a multiscale hyper-

connectivity system (ϕH ,H) on L.

We give below a few examples of multiscale hyperconnectivities (these examples corre-

spond to the multiscale extensions of the hyperconnectivity classes given in Example 4.4.3).

6.6.5 Example.

(a) Let L = P(ZZn), with the points as sup-generators, furnished with a connectivity

class C. Let {δσ(A) = A⊕ σB | σ ∈ ZZ+} be a family of dilations on P(ZZn), where B

contains the origin of ZZn and Bv ∈ C, for all v ∈ ZZn. Consider the overlap measure

⊥ on P(ZZn) given by

⊥({Aα}) =

 ∞, if
⋂
Aα �= ∅

−∧ {σ ∈ ZZ+ | ⋂ (Aα ⊕ σB) �= ∅}, otherwise
. (6.98)

Hence, a family is fully overlapping if their intersection is non-empty. Otherwise, it

is clear that the more spread apart the sets in the family are, the more negative the

degree of overlapping of the family is. It is easy to verify that (ϕH ,H), where H = C

in (6.40) and ϕH = ϕ in (6.41) (with ψσ = δσ, for σ ∈ ZZ+), is a multiscale hyper-

connectivity system on P(ZZn), according to the overlap measure ⊥ (this example is

intended only as an illustration, since (ϕH ,H) is clearly a dilation-pyramid multiscale

connectivity system on P(ZZn), there being nothing new here).

(b) (Graph-Theoretic Degree of Connectivity). Let L = P(E), where E ⊆ ZZn, with the

points as sup-generators, furnished with the overlap measure ⊥ on P(E) given by

⊥(A) =

 Card(
⋂A), if

⋂A �= ∅
−∞, otherwise

. (6.99)
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Therefore, the degree of overlap is the “area of intersection”; i.e., how many points

the sets in the family have in common, if the family has a non-empty intersection.

Otherwise, the family is fully non-overlapping. Now, let G = (E,L) be a graph.

Recall the notions of graph-theoretic k-connectivity in G and degree of connectivity

κG : P(E) → ZZ+ in G (see Definitions 3.2.9 and 3.2.10, respectively). The mapping

ϕH : P(E) → ZZ given by

ϕH(A) =


∞, if A = O or A ∈ S
κG(A), if A is connected

−∞, otherwise

, (6.100)

is a hyperconnectivity measure on P(E). Denoting by C the connectivity class of con-

nected sets in G, we can express the associated hyperconnectivity pyramid

H : ZZ → P(P(E)) by

H(σ) =

 {O} ∪ S ∪ {A ⊆ E | A is k-connected in G}, σ > 0

C, σ ≤ 0
, σ ∈ ZZ. (6.101)

Hence, the graph-theoretic degree of connectivity and graph-theoretic k-connectivity

essentially provide an example of a hyperconnectivity multiscale system. In this frame-

work, hyperconnectivity at scale σ corresponds essentially to σ-connectivity in the

graph-theoretical sense, for σ > 0 (indeed, H(σ) and the σ-overlap criterion ⊥σ are

the hyperconnectivity class and the overlap criterion of Example 4.4.3(b), respectively,

for σ > 0). Note that this is a “positive” type of connectivity, in the sense employed in

Section 6.3.2; i.e., the more positive the degree of connectivity is, the more “strongly

connected” the object is.

(c) (Multiscale Flat Hyperconnectivity). Let L = Fun(E,ZZ), where E ⊆ ZZn, with the

pulses as sup-generators. Recall the definition of the threshold operator Xτ (f) =

{v ∈ E | f(v) ≥ τ}. Consider the overlap measure ⊥ on Fun(E,ZZ) given by

⊥({fα}) =
∨

{σ ∈ ZZ | ⋂α{Xτ (fα) | Xτ (fα) �= ∅} �= ∅, ∀ τ ≤ σ}. (6.102)

Therefore, the degree of overlap is the maximum “height” below which all the non-

empty sections of the individual functions have non-empty intersection. Let {Cτ | τ ∈
ZZ} be a family of connectivity classes in P(E). The mapping ϕH : Fun(E,ZZ) → ZZ

given by

ϕH(f) =
∨

{σ ∈ ZZ | Xτ (f) ∈ Cτ , ∀τ ≤ σ}, (6.103)
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(a) (b)

g

E

f

E

τ

σ

Figure 6.15: Multiscale flat hyperconnectivity example. Here, E ⊆ ZZ and the underlying
connectivity pyramid reduces to a simple single-scale adjacency connectivity class in P(E).
(a) Function f is τ -connected, but not σ-connected; i.e. τ ≤ ϕH(f) < σ. (b) Function g is
fully hyperconnected, or flat hyperconnected; i.e., ϕH(g) = ∞.

is a hyperconnectivity measure on Fun(E,ZZ). The associated hyperconnectivity pyra-

mid H : ZZ → P(Fun(E,ZZ)) is given by

H(σ) = {f ∈ Fun(E,ZZ) | Xτ (f) ∈ Cτ , ∀τ ≤ σ}, σ ∈ ZZ. (6.104)

Hence, the degree of hyperconnectivity in this framework is the maximum “height”

below which all the sections of the function are connected; i.e., it is the height of the

lowest “disconnecting dip” in the graph of the function. In addition, hyperconnectivity

at scale σ essentially corresponds to flat σ-hyperconnectivity, for σ ∈ ZZ, as defined in

Example 4.4.3(c), with E ⊆ ZZn and T = ZZ; a function is fully hyperconnected in this

framework if it is flat hyperconnected, in the sense of Example 4.4.3(c). See Fig. 6.15

for an illustration (note that the functions in that example are discrete, even though

they are represented by continuous curves). ♦

Given a multiscale hyperconnectivity system (ϕH ,H) on L, the σ-hyperconnectivity open-

ings associated with (ϕH ,H) are given by:

ησ,x(A) =
∨

{H ∈ H(σ) | x ≤ H ≤ A}, σ ∈ ZZ, x ∈ S, (6.105)

for A ∈ L.

Given a σ ∈ ZZ, a σ-hyperconnected component or hyperconnected σ-grain of A ∈ L is

a σ-hyperconnected element H ∈ L such that H ≤ A and there is no σ-hyperconnected

element H ′ ∈ L with H ≤ H ′ ≤ A. It is clear that, if x ≤ A and ησ,x(A) ∈ H(σ), then
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ησ,x(A) is the σ-hyperconnected component of A ∈ L, marked by x; i.e., {ησ,x(A) | x ≤
A} ∩ H(σ) ⊆ Hσ(A), where Hσ(A) denotes the family of hyperconnected σ-grains of A.

Unlike the case of multiscale connectivity, it can be shown that the reverse inclusion is not

necessarily true (see Section 4.4 for a counterexample in the single-scale case).

As in the single-scale case, σ-hyperconnectivity openings lose some of the nice properties

enjoyed by σ-connectivity openings, chiefly among them the ability to uniquely characterize

the multiscale hyperconnectivity with which they are associated. However, they do share

with σ-connectivity openings the property of forming granulometries parameterized by scale,

as given by the next result.

6.6.6 Proposition. Let L be a lattice with sup-generating family S, furnished with a

multiscale hyperconnectivity system (ϕH ,H). The σ-hyperconnectivity openings associated

with (ϕH ,H), given by (6.105), satisfy the inequality: ησ,x ≤ η τ,x, if σ ≥ τ , for each x ∈ S;

i.e., {ησ,x | σ ∈ ZZ} constitutes a granulometry on L, for each x ∈ S. �

Proof. Denoting by 〈M | ∨ 〉 the family sup-generated by a family M, it is clear that, if

σ ≥ τ , we have that Inv(γσ,x) = 〈H(σ) ∩ M∗(x) | ∨ 〉 ⊆ 〈H(τ) ∩ M∗(x) | ∨ 〉 = Inv(γ τ,x),

for each x ∈ S. The desired result then follows from Proposition 2.2.1. Q.E.D.

Given a marker M ∈ L, the σ-hyperreconstruction ϑσ(A | M) of A ∈ L given M is

defined by:

ϑσ(A |M) =
∨
x≤M

ησ,x(A), σ ∈ ZZ. (6.106)

Being a supremum of openings, the operator ϑσ(· | M) is an opening on L, for σ ∈ ZZ and

a fixed marker M ∈ L. In addition, it is clear that ϑσ(· | M) ≤ ϑτ (· | M), for σ ≥ τ ; i.e.,

for each fixed marker M ∈ L, the family of openings {ϑσ(· | M) | σ ∈ ZZ} constitutes a

granulometry on L, parameterized by scale.

Multiscale hyperconnectivities have the potential to lead to useful image analysis tools,

similar to those discussed in Section 6.5 in connection with multiscale connectivities. In

particular, the multiscale signal decomposition scheme presented in Section 6.5.1 can be

applied here as well. For example, let L = Fun(E,ZZ), where E ⊆ ZZ2, with the pulses

as sup-generators, furnished with the multiscale flat hyperconnectivity system (ϕH ,H) of

Example 6.6.5(c). Given a root marker image g ∈ Fun(E,ZZ), consider the multiscale spaces

{Vσ | σ ∈ ZZ} given by

Vσ = Inv[ϑσ(· | g) ], σ ∈ ZZ, (6.107)
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where {ϑσ | σ ∈ ZZ} is the family of σ-hyperreconstruction operators associated with

(ϕH ,H), defined by (6.106). Let the addition and subtraction operations in Fun(E,ZZ)

be given by the usual integer addition and integer subtraction, respectively. This leads to

the pyramid transform

f → {h−1, f0} → {h−1, h0, f1} → · · · → {h−1, h0, . . . , hm−1, fm}, (6.108)

for m ≥ 0, with  fj+1 = ϑσ0+j+1(fj | g) ∈ Vσ0+j+1

hj = fj − fj+1 ∈ Fun(E,ZZ)
, (6.109)

for j = −1, 0, . . . ,m− 1, where f−1 = f . Note also that, since σ-reconstruction is an anti-

extensive operator, all the detail signals are positive, which can be of great value in practical

applications. Since the usual addition and subtraction satisfy the perfect reconstruction

condition, the original signal f can be exactly reconstructed from the basic signal fm and

the detail signals {h−1, h0, . . . , hm−1}, by means of the inverse pyramid transform

f = fm +
∑m
j=−1 hj . (6.110)

Figure 6.16 illustrates the above multiscale signal decomposition scheme using multiscale

flat hyperconnectivity, where the underlying family of connectivities reduces to single-scale

4-connectivity. In this example, σ0 = 100 and m = 99. Only a few of the detail images are

shown (most of them are zero). In this example, the root marker image is an impulse located

at the global maximum of the image, with height that equals the global maximum value.

Note that the basic image f99 contains the brightest cells in the image, whereas the low-

index detail images contain cells of low brightness (the grayscale range of all detail images

was considerably stretched for display purposes). In a sense, this agrees with the remark

made earlier that the detail images at lower scale correspond to less relevant information.

The application of multiscale hyperconnectivity to other multiscale image analysis tasks,

such as hierarchical segmentation and multiscale features, will be the subject of future

research.

6.7 Multiscale Connected Operators

In this section, we show that the notion of connected operators, discussed in Chapter 5,

can be extended to the framework of multiscale connectivities. We treat only the continuous

multiscale connectivity case; specialization to the discrete case is straightforward.
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original image

h57 h77

h98 f99

h−1 h9

h19 h38

Figure 6.16: Pyramid decomposition of a discrete grayscale image based on a multiscale flat
hyperconnectivity. In this example, the root marker image is simply an impulse located at
the global maximum of the image, with height that equals the global maximum value.
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First, we define the notion of σ-connected operators on function lattices.

6.7.1 Definition. Let (ϕ,C) be a multiscale connectivity system on P(E). An operator ψ

on Fun(E, T ) is said to be σ-connected if it is connected according to C(σ), for σ ∈ IR. "

A σ-connected operator is said to be connected at scale σ. An operator is said to be

fully connected if it is connected at all scales, whereas it is said to be fully disconnected if it

is not connected at any scale.

Recall from Section 6.5.2 the notion of hierarchical partition of flat zones zf of an image

f ∈ Fun(E, T ). The following result is a direct consequence of Definition 5.2.1.

6.7.2 Proposition. An operator ψ on lattice Fun(E, T ) is fully connected if and only if,

for every f ∈ Fun(E, T ), we have that zψ(f) is coarser than zf . �

The following result is a direct consequence of Proposition 5.2.2.

6.7.3 Proposition. If ψ is a σ-connected operator on Fun(E, T ), then ψ is τ -connected,

for τ ≥ σ. �

The above proposition says that if an operator is connected at a certain scale, it is

connected at all larger scales. In other words, increasing the connectivity scale preserves the

connectedness of the operator. However, lowering the connectivity scale increases clustering

of the connected components, which may destroy the connectedness of the operator.

The discussion above suggests the following definition.

6.7.4 Definition. The degree of connectivity of an operator ψ on Fun(E, T ) is defined by

Φ(ψ) = −
∧

{σ ∈ IR | ψ is σ-connected}. (6.111)

"

The degree of connectivity of an operator measures how “insensitive” the operator is to

clustering of the flat zones, in the sense that an operator with a large degree of connectivity

is connected at low connectivity scales, when the flat zones of the image are larger.

Figure 6.17 illustrates an operator ψ on P(ZZ2) that acts by filling in pixels in the

background that are surrounded by all 4-neighbors in the foreground. This operator is

connected only at positive scales, according to the multiscale connectivity of Example 6.1.2,
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ψ

Figure 6.17: The operator ψ exemplified is connected only at positive scales, according to
the multiscale connectivity of Example 6.1.2. Hence, Φ(ψ) = 0.

since at negative scales it breaks up the single flat zone corresponding to the background.

Accordingly, Φ(ψ) = 0.

Another example is provided by the dilation-pyramid multiscale connectivity of Exam-

ple 6.3.11. In this case, any connected operator ψ on P(E) according to the base connectivity

class C is connected at positive scales. For ψ to be σ-connected at negative scales, i.e., for

it to have a positive degree of connectivity, it must be, to some extent, “insensitive” to the

clustering of flat zones introduced by the dilation; i.e., it must treat clusters of grains or

pores uniformly (either keep them or remove them). The larger the degree of connectivity

Φ(ψ) is, the larger the clusters of grains or pores that ψ treats uniformly are.

The above discussion on σ-connected operators obviously applies to the binary case as

well. In particular, Propositions 5.1.4 and 6.7.3 lead easily to the following result.

6.7.5 Proposition. Let ψ, φ, and {ψi | i ∈ I} be connected operators on P(E).

(i) The operator ψ is σ-connected if and only if the dual operator ψ∗ is σ-connected.

(ii) If ψ is σ-connected and φ is τ -connected, then the composition ψφ is (σ∨τ)-connected.

(iii) If ψi is σi-connected, for i ∈ I, then the supremum
∨
ψi and the infimum

∧
ψi are

(
∨
σi)-connected. �

The ideas discussed in Section 6.2 on grain operators extend directly to the framework

of multiscale connectivity.

Given a multiscale connectivity system (ϕ,C) on P(E), we define foreground σ-grain

operators and background σ-grain operators by

ψσ,u =
∨
x∈E

ιuγσ,x (6.112)

φσ,v =
∧
x∈E

κvϕσ,x, (6.113)
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respectively, where {γσ,x | σ ∈ IR, x ∈ E} are the σ-connectivity openings associated with

(ϕ,C) and {ϕσ,x | σ ∈ IR, x ∈ E} are the corresponding σ-connectivity closings, given

by ϕσ,x = γ∗
σ,x, for σ ∈ IR, x ∈ E, and ιu, κv are the foreground and background trivial

operators, defined by (5.4) and (5.5), respectively. Note that ψσ,u and φσ,v are obviously

σ-connected operators. In addition, ψ∗
σ,u = φσ,u; i.e., the foreground σ-grain operator and

the background σ-grain operator are dual to each other.

Note that, if u is increasing, then ασ,u = ψσ,u is an opening on P(E), called a σ-grain

opening. Similarly, if v is increasing, then βσ,v = φσ,v is a closing on P(E), called a σ-grain

closing.

We have the following result.

6.7.6 Proposition.

(a) The σ-grain openings satisfy the inequality: ασ,u ≤ ατ,u, if σ ≥ τ ; i.e., the family

{ασ,u | σ ∈ IR} constitutes a granulometry on P(E).

(b) The σ-grain closings satisfy the inequality: βσ,u ≥ βτ,u, if σ ≥ τ ; i.e., the family

{βσ,u | σ ∈ IR} constitutes an anti-granulometry on P(E). �

Proof. (a): If σ ≥ τ , we have that γσ,x ≤ γ τ,x ⇒ ιuγσ,x ≤ ιuγ τ,x ⇒ ασ,u =
∨
ιuγσ,x ≤∨

ιuγ τ,x = ατ,u, as required.

(b): The proof is completely analogous. Q.E.D.

We remark that, in the literature, granulometries and anti-granulometries based on grain

openings and grain closings are indexed by the criteria u and v. On the other hand, the

granulometries and anti-granulometries defined in Proposition 6.7.6 are indexed by the scale

parameter, which opens up new practical possibilities for the use of σ-grain openings and

σ-grain closings in applications.

If the criterion u, or v, is not increasing, then the family {ασ,u | σ ∈ IR}, or {βσ,v | σ ∈ IR},

does not have any regular ordering with respect to the scale parameter σ. However, we can

define the following operators:

υσ,u =
∧
τ≤σ

ψτ,u (6.114)

ωσ,v =
∨
τ≤σ

φτ,v. (6.115)
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These operators are clearly σ-connected; furthermore, they are dual to each other: υ∗
σ,u =

ωσ,v. In addition, for σ ≥ τ , we have that υσ,u ≤ υτ,u and ωσ,v ≥ ωτ,v. Note that these

properties resemble those of σ-grain openings and σ-grain closings. As a matter of fact, if u

is increasing, then υσ,u = ψσ,u = ασ,u; similarly, if v is increasing, then ωσ,v = φσ,u = βσ,v.

Similarly to the single-scale case, we can define a class of operators that simultaneously

act on the foreground and the background (recall that C �σ A means that C is a σ-grain

of A):

ζσ,u,v(A) =
⋃

{C | C �σ A and u(C) = 1 or C �σ Ac and v(C) = 0}
= ψσ,u(A) ∪ [φσ,v(A) �A] = φσ,v(A) � [A� ψσ,u(A)], (6.116)

for A ∈ P(E). These are called σ-grain operators and generalize foreground and background

σ-grain operators, since ψσ,u = ζσ,u,1 and φσ,v = ζσ,1,v.

We now have the following characterization.

6.7.7 Proposition. Let ψ be a σ-grain operator on P(E). For τ ≤ σ,

ψ is a τ -connected operator ⇔ ψ is a τ -grain operator. (6.117)

�

Proof. “⇒”: Let A1, A2 ∈ P(E), and let C be a flat σ-zone (a σ-grain or σ-pore) of both

A1 and A2. Since, by hypothesis, ψ is τ -connected, it follows from Proposition 5.1.11 that

it suffices to show that ψ(A1)(C) = ψ(A2)(C). We have that C =
⋃
Cα, where Cα are

flat σ-zones of A1 and A2. But, since ψ is a σ-grain operator, we have that ψ(A1)(Cα) =

ψ(A2)(Cα), for each α. Hence ψ(A1)(C) = ψ(A2)(C), as required.

“⇐”: This implication is obvious. Q.E.D.

Hence, lowering the connectivity scale does not destroy the locality (the property of

being a grain operator) of a σ-grain operator as long as the operator remains connected.

This does not work in the reverse direction: increasing the connectivity scale may destroy

locality, even though it preserves connectedness.



Chapter 7

Conclusions

In this dissertation, we have presented a comprehensive theory of connectivity in image

processing and analysis. We believe that this dissertation makes a significant contribution

to the state of the art on connectivity and its applications in image processing and analysis.

We have provided a thorough review of several existing definitions of connectivity, in

ordinary and fuzzy topological spaces or graphs. As far as we know, such an extensive

review of traditional concepts of connectivity is lacking in the literature.

Besides reviewing the theory of “morphological connectivity” — the theory of connectiv-

ity classes in complete lattices — we have expanded it with new results and new examples,

and demonstrated its usefulness with applications based on connected operators.

We have also proposed a novel theoretical framework for the notion of multiscale con-

nectivity, which includes the previous theory of connectivity classes in complete lattices as

a special, single-scale case. Among the contributions made by this new theory, we stress

the possibility of developing multiscale tools based on connectivity, such as pyramid decom-

positions, hierarchical segmentation, hierarchical clustering, and multiscale features, which

we have demonstrated using simulated and real examples.

Several issues remain to be addressed, which may constitute topics for future research.

A few of them are listed in the sequence.

• New examples of connectivities and multiscale connectivities need to be developed,

especially examples for grayscale and multispectral images.

• Several interesting theoretical questions are still open. For instance, it would be desir-

able to find a sufficient condition for a structural closing to be connectivity-preserving,
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and to be a strong clustering, in the sense of Section 4.3. Similarly, a sufficient con-

dition for the approximation closings of sampling theory to be strong clusterings

is needed. As a matter of fact, a practical criterion to decide which connectivity-

preserving closings are strong clusterings would be quite useful.

• It would be interesting to study how to define hierarchical partitions based on multi-

scale hyperconnectivities. For instance, this would make possible to use multiscale flat

hyperconnectivity, discussed in Section 6.6, in hierarchical segmentation of grayscale

images, and to develop multiscale features based on these hierarchical segmentations.

• Most of the examples of connectivity and multiscale connectivity presented here need

to be assessed in real applications. In particular, we would like to evaluate flat

grayscale connectivity and flat τ -hyperconnectivity, discussed in Sections 4.2 and 4.4,

respectively, as segmentation tools for grayscale images.

• Similarly, we would like to investigate the performance of the multiscale tools defined

in Section 6.5 in real applications. For instance, we would like to evaluate the use of

hierarchical clustering based on multiscale connectivities in real multidimensional un-

supervised classification problems. We also would like to consider the use of moments

of the clustering curve, or of the clustering spectrum, as a tool for texture classifica-

tion, and compare the results against other multiscale features, such as granulometric

moments or wavelet decomposition coefficients.

Some of the issues listed above are currently under consideration, and we plan to pursue

them in our future research.
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HPCC, 219,228

length opening, 141

length feature, 222

multiscale connectivity, 6, 173, 211,

232

multiscale connectivity system, 177

multiscale graph-theoretic connectiv-

ity, 178

multiscale topological connectivity, 178

opening pyramid, 201

opening-pyramid multiscale connectiv-

ity, 201

σ-connected component, 179

σ-connectivity opening, 178

σ-reconstruction operator, 179

topology, 27

topology pyramid, 177

-valued image, 16

volume feature, 222

volume opening, 142

distance function, 28

dual operator, 17, 137, 138, 242

erosion, 17, 117

flat grayscale translation-invariant -,

26

translation-invariant -, 23, 143

Euclidean space, 27

exponential topology, 31

extensive operator, 18

false alarm, 149

feature, 222

average area -, 223, 229

greatest area -, 223, 229

monotone -, 222

least area -, 223, 229,

counting -, 223, 229

l.l.s.c. -, 223

l.u.s.c. - , 222, 226

filter, 18, 163

median -, 154

finite subcover, 28

fixpoint, 19

flat

extension, 23, 145

grayscale connectivity, 4, 246

grayscale connectivity class, 95

grayscale operator, 26

grayscale structural closing, 26

grayscale structural opening, 26

grayscale translation-invariant dilation,

26, 108

grayscale translation-invariant erosion,

26

hyperconnectivity, 124, 128, 132, 237

hyperconnectivity class, 131

operator, 25, 103

τ -hyperconnectivity, 123, 237, 246

zone, 5, 135, 144, 241

FLIR, 5, 150

FOV, 150

foreground

criterion, 138

grain operator, 138

σ-grain operator, 242

trivial operator, 138, 243
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zone, 137

full

hyperconnectivity, 232, 234

non-hyperconnectivity, 232, 234

fully connected

element, 159, 162, 166, 171, 177, 183,

195, 204, 208

fuzzy graph, 55

fuzzy topological space, 47, 52

operator, 241

fully disconnected

element, 159, 162, 166, 171, 177, 184,

195

fuzzy graph, 55

fuzzy topological space, 47, 52

operator, 241

fully overlapping family, 232

fully non-overlapping family, 232

function

flat τ -hyperconnected -, 123

flat hyperconnected -, 124

lattice, 14

support of -, 65, 132

fuzzy

complement, 33

connectivity, 3

connectivity class, 159

graph-theoretic τ -connectivity, 5 , 55,

64, 168

induced subgraph, 54

intersection, 33

measure, 159

path, 54

point, 33, 52

relation, 54

set, 33

subspace, 34

topological τ -connectivity, 5, 47, 64,

168

topology, 34

union, 33

fuzzy graph, 53, 64, 169

fully connected -, 55

fully disconnected -, 55

τ -connected -, 55

fuzzy topological space, 34, 47, 64, 168

fully connected -, 47, 52

fully disconnected -, 47, 52

τ -connected -, 47,

geodesic

dilation, 82

reconstruction, 82

grain, 67, 136, 242

closing, 107, 140, 243

grayscale - operator, 147

opening, 140, 243

operator, 143

granulometric moments, 246

granulometry, 8, 21, 171, 179, 182, 195,

201, 238, 243

graph, 42

edges of a -, 42

null -, 42

order of a -, 42

vertices of a -, 42
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graph-theoretic

connectivity, 1, 61, 64, 82, 168

k-connectivity, 4, 44, 65, 86, 123, 236

k-connectivity class, 87, 131

degree of connectivity, 7, 45, 235

grayscale

area closing, 146, 153

area opening, 146, 153

closing by reconstruction, 146

connectivity class, 4, 64

grain operator, 147

image, 16

opening by reconstruction, 146, 149

reconstruction operator, 82, 91, 103,

106, 146

greatest element, 12

handle, 152

Hausdorff space, 14, 15, 28, 61, 72, 74, 75,

89, 185

hierarchical

clustering, 2, 6, 215, 220, 246

partition of connected components, 7,

170, 217

segmentation, 2, 6, 215, 239

hierarchical partition, 7, 215, 227, 246

connected -, 216

coarser -, 217

coercive -, 216, 226

discrete -, 219

finer -, 217

hierarchical partition of flat zones, 7, 219,

241

discrete -, 222

hit-or-miss

continuous function, 32

lower semi-continuous function, 32

topology, 31, 75

upper semi-continuous function, 32

H-M

l.s.c. function, 32, 76

u.s.c. function, 32, 75, 76, 89

homeomorphism, 152

HPCC, 170, 205, 217, 226

discrete -, 219, 228

H-topology, 31

hyperconnected

component, 128, 130

σ-grain, 237

hyperconnectivity, 4, 65, 122

class, 122, 233

opening, 126, 130

pyramid, 233

hyperconnectivity measure, 7, 232

binary -, 233

hyperreconstruction operator, 126

idempotent operator, 18

identity operator, 17, 137

intensity connectivity, 59

image

coding, 211

discrete-valued -, 16

maximum, 147

minimum, 147

sequence, 16
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increasing operator, 17

indiscrete topology, 27

induced subgraph, 43

inf semi-lattice, 11, 161

inf-filter, 19

infimum, 11

of operators, 17

infinite

∨-distributive lattice, 4, 13, 78, 82,

103, 116

∧-distributive lattice, 13

distributive lattice, 13

interpolation

operator, 109

property, 181, 189

invariance domain, 18, 126, 163

isomorphic lattices, 13, 16, 72, 81, 165,

176, 177, 234

k-connected component, 45

k-connectivity, 4, 44, 65, 86, 123, 236

landmine detection, 5, 147

lattice, 11

atomic -, 4, 13, 77, 85, 87, 115, 119,

207

complete -, 2, 11

connectivity on complete -s, 3

continuous operator, 22

function -, 14

inf semi- -, 11, 161

infinite ∨-distributive -, 4, 13, 78, 82,

103, 116

infinite ∧-distributive -, 13

infinite distributive -, 13

isomorphic -s, 13, 16, 72, 81, 165, 176,

177, 234

isomorphism, 13, 165, 176, 177, 234

lower semi-continuous operator, 22

of closed sets, 14, 72, 89, 185

of lower semi-continuous functions, 15

of open sets, 14

of partitions, 69, 223

of upper semi-continuous functions, 15,

88

semi-atomic -, 13

set -, 14

strongly semi-atomic -, 13, 81, 113

sup semi- -, 11

upper semi-continuous operator, 22

ψ-invariant -, 4, 84

least element, 12

length

feature, 222

opening, 141

level

connected component, 51

connectivity, 51, 58, 65, 125

limit, 31

inferior, 31

superior, 31, 76

line closing, 106, 111

l.l.s.c. operator, 22, 74

l.s.c. function, 15

l.u.s.c. operator, 22, 73
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locally-invariant opening

with respect to a connectivity, 116,

197

with respect to a multiscale connec-

tivity, 208

lower semi-continuous function, 15

majorant, 12

marker, 66, 77, 173, 179, 238

mathematical morphology, 2, 6

MatLab, 9

median filter, 154

membership function, 33, 153

metric space, 14, 15, 28

MICOM, 150

minorant, 12

misdetection, 149

MMach Mathematical Morphology tool-

box, 9

MNF transform, 147

morphological

connectivity, 2

gradient operator, 152

sampling, 4, 108, 190

motion connected operator, 151

MRI, 5

multiscale

connected operator, 247

feature, 2, 7, 222, 239, 246

flat hyperconnectivity, 7, 236, 246

graph-theoretic connectivity, 169, 172

hyperconnectivity, 7, 231, 239

hyperconnectivity system, 235

methods, 2

morphological connectivity, 5

space, 210

topological connectivity, 168

multiscale clustering, 204

strong -, 204

multiscale connectivity, 1, 5, 157

closing-pyramid -, 189

clustering-based second-generation -,

206

clustering-pyramid -, 183

continuous -, 6

contraction-based second-generation -,

208

contraction-pyramid -, 195

dilation-pyramid -, 188, 217, 226, 235,

242

discrete -, 6, 173, 211, 232

discrete - system, 177

negative -, 6, 180

opening-based second-generation -, 208

opening-pyramid -, 195, 217, 226

positive -, 6, 180

second-generation -, 6, 202

multiscale connectivity system, 166, 171

strong -, 171

translation-invariant -, 171, 204, 208

multispectral image, 16, 147

multiscale signal decomposition, 6, 209,

213, 238

object-based -, 6, 210



266 INDEX

n-adjacency connectivity, 44

n-dimensional image, 16

negation, 17, 46

negative

degree of connectivity, 183, 188, 190

multiscale connectivity, 6, 180

neighborhood, 27

nesting condition, 210

noise, 87, 116, 132, 190, 208

normal space, 29

numerical taxonomy, 215

object-based

coding, 6, 215

multiscale signal decomposition, 6, 210

open

cover, 28

fuzzy set, 34

set, 16, 27, 41

opening, 18, 19, 26, 67, 79, 85, 126, 172

adjunctional -, 18, 23, 117, 208

area -, 141

by reconstruction, 142, 149

characteristic -, 20, 84, 93, 170, 195

discrete area -, 86, 141

discrete length -, 141

discrete σ-connectivity -, 178

discrete volume -, 142

flat grayscale structural -, 26

grain -, 140, 243

grayscale area -, 146, 153

grayscale - by reconstruction, 146, 149

hyperconnectivity -, 126, 130

length -, 141

pseudo- -, 141

σ-connectivity -, see σ-connectivity open-

ing

σ-grain -, 8, 243

σ-hyperconnectivity -, 237

structural -, 23, 85, 115, 118, 120, 196

volume -, 141

opening-based

connectivity class, 115, 118

second-generation multiscale connec-

tivity, 208

opening pyramid, 195

discrete -, 201

locally-invariant -, 197

opening-pyramid multiscale connectivity,

195, 217, 226

discrete -, 201

operator, 17

anti-extensive -, 18

composition of two -s, 17

connectivity-increasing -, 203, 204

connectivity-preserving -, 100, 102, 104,

203

↑-continuous -, 22

↓-continuous -, 22, 26, 89, 103, 172,

185, 187, 199

%-continuous -, 22

degree of connectivity of an -, 8, 241

dual -, 17, 137, 138, 242

extensive -, 18

flat -, 25, 103

full connectivity of an -, 241



INDEX 267

full disconnectedness of an -, 241

idempotent -, 18

increasing -, 17

infimum of -s, 17

lattice continuous -, 22

lattice lower semi-continuous -, 22

lattice upper semi-continuous -, 22

l.l.s.c. -, 22, 74

l.u.s.c. -, 22, 73

multiscale connected -, 247

σ-connected -, 8, 241, 243

semi-flat grayscale -, 26

semi-flat -, 25, 83

supremum of -s, 17

overlap criterion, 65, 122, 232

standard -, 121

overlap measure, 232

binary -, 232

standard -, 233

overlapping family, 51, 58, 122

fully non- -, 232

fully -, 232

PCC, 70, 75, 76, 77, 89, 102, 106, 132

partial order relation, 2, 11

partially ordered set, 11

partition, 62, 68, 128, 170, 215, 219

closing, 112

coarser -, 68

connected -, 68

finer -, 68

lattice of -s, 69, 223

of a function, 145

of a set, 136

of connected components, 70

of flat zones

set -, 68, 70, 130, 132

zone, 68

partition feature, 223

monotone -, 223, 226

path, 41, 43

path-connected

component, 41

set, 41

topological space, 41

pattern

recognition, 7

spectrum, 7, 222

pattern-theoretic approach, 150

perfect reconstruction condition, 210, 213,

214, 239

perimeter criterion, 142

polygonal-line connectivity, 64

pore, 107, 136, 138, 242

poset, 11, 181

positive

degree of connectivity, 195, 199, 202,

236, 242

multiscale connectivity, 6, 180

propagation algorithm, 81

pseudo-

closing, 141

dilation, 188

opening, 141

pulse function, 15, 59, 95
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pyramid

condition, 210

decomposition, 2, 6, 209, 240

of operators, 181

pyramid transform, 210, 239

inverse -, 211, 239

range, 17

reconstruction operator, 3, 77, 103, 118,

173, 179

binary -, 137, 141

regional maximum, 89, 125, 128

resolution, 3, 157

root marker, 211, 213, 238

σ-

connected operator, 8, 241, 243

connectivity class, 162

connectivity closing, 243

genus, 225

grain, 170, 225

grain closing, 8, 243

grain opening, 8, 243

grain operator, 8, 244

hyperconnected component, 237

hyperconnectivity, 232, 234

hyperconnectivity class, 233

hyperconnectivity opening, 237

hyperreconstruction, 238

open, 195

overlap criterion, 232

partition, 170, 205, 216

pore, 225

reconstruction operator, 5, 173, 184,

198, 207, 209, 211

section, 159, 166, 177

stable element, 194

zone, 216, 219, 220

σ-connected

component, 170

element, 159, 162, 166, 171, 177, 192,

195, 208

operator, 8, 241, 243

σ-connectivity opening, 5, 170, 184, 198,

203, 206, 209

↓-continuous -, 172, 188, 199, 217, 219

σ-level

of connectivity pyramid, 162, 166, 177

of hierarchical partition, 216

of HPCC, 170

of hyperconnectivity pyramid, 233

sampling, 2, 153

element, 109, 191

grid, 109, 191

operator, 109

sampling-based connectivity class, 111

scale, 2, 5, 157

scale-space, 2, 157

clustering, 221

second-generation

connectivity class, 4, 97

image coding, 6, 210

multiscale connectivity, 6, 202

segmentation by similarity zones, 4

of functions, 132

of sets, 130
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segmentation, 97, 246

fuzzy -, 153

hard -, 132

semi-atom, 13

semi-atomic lattice, 13

semi-continuity properties of connectivity

openings, 3, 72

semi-flat

grayscale operator, 26

operator, 25, 83

semigroup property, 21

separation, 40

sequence, 28, 75

set lattice, 14

single-scale

connectivity, 5, 159, 162, 174

hyperconnectivity, 233

similarity zone, 130

spatio-temporal connected component, 151

stable element, 114

σ- -, 194

stability of grain operator, 143

strength of connection, 54

strong

clustering operator, 100, 185, 246

clustering pyramid, 182

connectivity class, 63, 73, 96

connectivity measure, 159, 166

connectivity pyramid, 162, 166

filter, 19, 112, 143

multiscale clustering, 204

multiscale connectivity system, 171

semi-atom, 13

τ -connectivity, 55

strongly semi-atomic lattice, 13, 81, 113

structural

closing, 23, 108, 245

opening, 23, 85, 115, 118, 120, 196

structuring element, 23, 106, 111, 118, 120,

149, 150, 181

subbasis for a topology, 27

sublattice, 17, 163, 175, 176

subsequence, 28

subspace topology, 29

sup semi-lattice, 11

sup-closed family, 19, 84, 90, 126

sup-filter, 19

sup-generating family, 12

sup-generator, 12

support connectivity, 64, 77

supremum, 11

of operators, 17

synthesis operator, 210

τ -

cluster, 56

level graph, 54, 169

level of a topology pyramid, 36, 169

level topological space, 35

separation, 49

τ -connected

component, 49, 56

fuzzy graph, 55

fuzzy topological space, 47

set, 49, 56, 64, 168

T -fuzzy set, 33, 159
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target, 147, 151

detection and tracking, 5, 150

Tarski’s fixpoint theorem, 19

texture classification, 246

thickening, 153

thinning, 153

threshold

operator, 24, 82, 236

set, 24, 124

topographic

connectivity, 57, 65, 125

fuzzy graph, 57

topographically connected component, 57

topological

closure, 14, 27, 41, 75, 111

connectivity, 1, 61, 63, 168

interior, 14, 27

space, 27

subspace, 29

topologically generated fuzzy space, 34

Topologist’s sine curve, 42

topology, 27

correction, 5, 152

discrete -, 27

topology pyramid, 36, 48, 49, 53, 168

discrete -, 177

total order, 11

transition zone

of functions, 132

of sets, 130

translation, 22, 85

translation-invariant

connectivity class, 63, 111, 118, 143,

192

connectivity measure, 159, 166

connectivity pyramid, 162, 166

dilation, 23, 106, 204, 235

erosion, 23, 143

flat grayscale - dilation, 26, 108

flat grayscale - erosion, 26

multiscale connectivity system, 171,

204, 208

tunnel, 152

underlattice, 17, 19, 66, 84, 85, 86, 94, 163

undirected graph, 43, 81

unsupervised classification, 7, 215, 246

upper semi-continuous function, 15

u.s.c. function, 15, 88

Vietoris topology, 31

volume

feature, 222

opening, 141

watershed transform, 124

wavelet, 2, 246

weighted graph, 54

white matter, 153

ψ-invariant lattice, 4, 84

Z-operator, 4, 130


